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Objectives
• Minimum Spanning Tree
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Laying Cable
• Comcast wants to lay cable in a neighborhood

Ø Reach all houses
Ø Least cost
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Neighborhood Layout
Cost of laying cable btw houses 

depends on amount of cable, 
landscaping, obstacles, etc.
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Minimum Spanning Tree (MST)
• Spanning tree: spans all nodes in graph
• Given a connected graph G = (V, E) with positive 

edge weights ce, an MST is a subset of the edges 
T Í E such that T is a spanning tree whose sum
of edge weights is minimized
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G = (V, E)
T,  SeÎT ce = 50

Examples
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Identify spanning trees and which is the minimal spanning tree.
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Examples
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MST: 

Other Spanning Trees: 

Identify spanning trees and which is the minimal spanning tree.
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MST Applications
• Network design

Ø telephone, electrical, hydraulic, TV cable, computer, road
• Approximation algorithms for NP-hard problems

Ø traveling salesperson problem, Steiner tree
• Indirect applications

Ø max bottleneck paths
Ø image registration with Renyi entropy
Ø learning salient features for real-time face verification
Ø reducing data storage in sequencing amino acids in a 

protein
Ø model locality of particle interactions in turbulent fluid 

flows
• Cluster analysis
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http://www.ics.uci.edu/
~eppstein/gina/mst.html
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Minimum Spanning Tree

• Given a connected graph G = (V, E) with positive 

edge weights ce, an MST is a subset of the edges 

T Í E such that T is a spanning tree whose sum
of edge weights is minimized
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Why must the solution be a tree?
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G = (V, E)
T,  SeÎT ce = 50

Minimum Spanning Tree
• Assume have a minimal solution that is not a 

tree, i.e., it has a cycle
• What could we do?

ØWhat do we know about the edges?
ØHow does that change the cost of the solution?
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Minimum Spanning Tree
• Proof by Contradiction.
• Assume have a minimal solution V that is not a 

tree, i.e., it has a cycle
• Contains edges to all nodes because solution 

must be connected (spanning)
• Remove an edge from the cycle

ØCan still reach all nodes (could go “long way around”)
ØBut at lower total cost
ØContradiction to our minimal solution
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Ideas for Solutions?
• Cayley's Theorem.  There are nn-2 spanning trees 

• Towards a solution…
ØWhere to start?  
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can't solve by 
brute force
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Greedy Algorithms

• Prim's algorithm.  
Ø Start with some root node s and greedily grow a tree T from s outward
Ø At each step, add cheapest edge e to T that has exactly one endpoint in T
Ø Similar to Dijkstra’s (but simpler)

• Kruskal's algorithm.  
Ø Start with T = f
Ø Consider edges in ascending order of cost
Ø Insert edge e in T unless doing so would create a cycle

• Reverse-Delete algorithm.  
Ø Start with T = E
Ø Consider edges in descending order of cost
Ø Delete edge e from T unless doing so would disconnect T
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What do these algorithms have/do/check in common?

All three algorithms produce a MST

What Do These Algorithms Have in Common?

• When is it safe to include an edge in the 
minimum spanning tree?

• When is it safe to eliminate an edge from the 
minimum spanning tree?
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Cut Property

Cycle Property
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Cut and Cycle Properties
• Simplifying assumption: All edge costs ce are distinct

➜ MST is unique
• Cut property.  Let S be any subset of nodes, and 

let e be the min cost edge with exactly one endpoint in S.  
Then MST contains e.

• Cycle property.  Let C be any cycle, and 
let f be the max cost edge belonging to C.  
Then MST does not contain f.
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f
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Cut Property: e is in MST

e

Cycle Property: f is not in MST

Let’s try to prove these … 

Cycles and Cuts
• Cycle.  Set of edges in the form 

a-b, b-c, c-d, …, y-z, z-a 
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Cycle C  =  1-2, 2-3, 3-4,
4-5, 5-6, 6-1
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Cycles and Cuts
• Cycle.  Set of edges in the form a-b, b-c, c-d, …, y-z, 

z-a 
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Cycle C  =  1-2, 2-3, 3-4,
4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S      = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4,

3-5, 7-8
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• Cutset. A cut is a subset of nodes S.  
The corresponding cutset D is the subset of edges 
with exactly one endpoint in S.

Cycle-Cut Intersection
• Claim.  A cycle and a cutset intersect in an even 

number of edges

Feb 27, 2019 CSCI211 - Sprenkle 16

1
3

8

2

6

7

4

5

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cut S = { 4, 5, 8 }
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6

What are the possibilities 
for the cycle?
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Cycle-Cut Intersection
• Claim.  A cycle and a cutset intersect in an even 

number of edges

• Proof sketch
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Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cut S = { 4, 5, 8 }
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6

(Cut) Edges link to not-Cut

1. Cycle all in S
2. Cycle not in S
3. Cycle has to go from 

SàV-S and back

V - S

Proving Cut Property: OK to Include Edge

• Simplifying assumption: All edge costs ce are 

distinct.

• Cut property. Let S be any subset of nodes, and 

let e be the min cost edge with exactly one 

endpoint in S. 
Then the MST T* contains e.

• Pf.?
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Proving Cut Property: OK to Include Edge
• Simplifying assumption: All edge costs ce are 

distinct.
• Cut property.  Let S be any subset of nodes, and 

let e be the min cost edge with exactly one 
endpoint in S. 
Then the MST T* contains e.

• Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e

• What do we know about T, by defn?
• What do we know about the nodes e connects?
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Looking Ahead
• Problem Set 5 due Friday
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