Objectives

Minimum Spanning Tree

Laying Cable

- Comcast wants to lay cable in a neighborhood
$>$ Reach all houses
$>$ Least cost

Minimum Spanning Tree (MST)

- Spanning tree: spans all nodes in graph
- Given a connected graph $G=(\mathrm{V}, \mathrm{E})$ with positive edge weights c_{e}, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that T is a spanning tree whose sum of edge weights is minimized

$\mathrm{T}, \Sigma_{\mathrm{e} \in \mathrm{T}} \mathrm{C}_{\mathrm{e}}=50$

Examples

Identify spanning trees and which is the minimal spanning tree.

Examples

Identify spanning trees and which is the minimal spanning tree.

Other Spanning Trees:

MST Applications

Network design
> telephone, electrical, hydraulic, TV cable, computer, road

- Approximation algorithms for NP-hard problems
$>$ traveling salesperson problem, Steiner tree
- Indirect applications
$>$ max bottleneck paths
$>$ image registration with Renyi entropy
$>$ learning salient features for real-time face verification
$>$ reducing data storage in sequencing amino acids in a protein
$>$ model locality of particle interactions in turbulent fluid flows
- Cluster analysis
http://www.ics.uci.edu/
~eppstein/gina/mst.html

Minimum Spanning Tree

- Given a connected graph $G=(\mathrm{V}, \mathrm{E})$ with positive edge weights c_{e}, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that T is a spanning tree whose sum of edge weights is minimized

$G=(V, E)$
Why must the solution be a tree?

Minimum Spanning Tree

- Assume have a minimal solution that is not a tree, i.e., it has a cycle
- What could we do?
$>$ What do we know about the edges?
> How does that change the cost of the solution?

Minimum Spanning Tree

- Proof by Contradiction.
- Assume have a minimal solution V that is not a tree, i.e., it has a cycle
- Contains edges to all nodes because solution must be connected (spanning)
- Remove an edge from the cycle
> Can still reach all nodes (could go "long way around")
$>$ But at lower total cost
$>$ Contradiction to our minimal solution

Ideas for Solutions?

- Cayley's Theorem. There are n^{n-2} spanning trees
- Towards a solution... brute force
$>$ Where to start?

$$
G=(V, E)
$$

Greedy Algorithms

All three algorithms produce a MST

- Prim's algorithm.
$>$ Start with some root node s and greedily grow a tree T from s outward
$>$ At each step, add cheapest edge e to T that has exactly one endpoint in T
> Similar to Dijkstra's (but simpler)
- Kruskal's algorithm.
$>$ Start with $T=\phi$
$>$ Consider edges in ascending order of cost
$>$ Insert edge e in T unless doing so would create a cycle
- Reverse-Delete algorithm.
$>$ Start with $\mathrm{T}=\mathrm{E}$
$>$ Consider edges in descending order of cost
$>$ Delete edge e from T unless doing so would disconnect T
What do these algorithms have/do/check in common?

What Do These Algorithms Have in Common?

- When is it safe to include an edge in the minimum spanning tree?

Cut Property

- When is it safe to eliminate an edge from the minimum spanning tree?

Cycle Property

Cut and Cycle Properties

- Simplifying assumption: All edge costs C_{e} are distinct
\rightarrow MST is unique
- Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then MST contains e.
- Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then MST does not contain f.

Cut Property: e is in MST

Cycle Property: f is not in MST

Cycles and Cuts

- Cycle. Set of edges in the form

$$
a-b, b-c, c-d, \ldots, y-z, z-a
$$

Cycles and Cuts

- Cycle. Set of edges in the form $a-b, b-c, c-d, \ldots, y-z$, z-a

$\begin{aligned} & \text { Cycle } C= I-2,2-3,3-4, \\ & 4-5,5-6,6-I\end{aligned}$
- Cutset. A cut is a subset of nodes S.

The corresponding cutset D is the subset of edges with exactly one endpoint in S.

$$
\begin{aligned}
\text { Cut } S= & \{4,5,8\} \\
\text { Cutset } D= & 5-6,5-7,3-4, \\
& 3-5,7-8
\end{aligned}
$$

Cycle-Cut Intersection

- Claim. A cycle and a cutset intersect in an even number of edges


```
Cycle C \(=\) I-2, 2-3, 3-4, 4-5, 5-6, 6-I Cut \(S=\{4,5,8\}\)
Cutset \(\mathrm{D}=3-4,3-5,5-6,5-7,7-8\) Intersection \(=3-4,5-6\)
```

What are the possibilities for the cycle?

Cycle-Cut Intersection

- Claim. A cycle and a cutset intersect in an even number of edges

- Proof sketch
Cycle $C=I-2,2-3,3-4,4-5,5-6,6-I$
Cut $S=\{4,5,8\}$
Cutset $D=3-4,3-5,5-6,5-7,7-8$
Intersection $=3-4,5-6$
I. Cycle all in S

2. Cycle not in S
3. Cycle has to go from $\mathrm{S} \rightarrow \mathrm{V}$-S and back

Proving Cut Property: OK to Include Edge

Simplifying assumption: All edge costs c_{e} are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S.
Then the MST T* contains e.

- Pf.?

Proving Cut Property: OK to Include Edge

- Simplifying assumption: All edge costs C_{e} are distinct.
- Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S.
Then the MST T* contains e.
- Pf. (exchange argument)
$>$ Suppose there is an MST T* that does not contain e
- What do we know about T, by defn?
- What do we know about the nodes e connects?

Looking Ahead

- Problem Set 5 due Friday

