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Objectives
• Minimum Spanning Tree
• Union-Find Data Structure
• Clustering
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Review

• What does the acronym MST stand for?
Ø What is an MST?

• What are some algorithms to find the MST?
• What did we prove about the intersection of cycles 

and cut sets?
• How do we prove the following:

Ø Cut property.  Let S be any subset of nodes, and let e be 
the min cost edge with exactly one endpoint in S. 
Then the MST T* contains e.

Ø Pf. (exchange argument)
• Suppose there is an MST T* that does not contain e

Ø What do we know about T, by defn?
Ø What do we know about the nodes e connects?
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Proving Cut Property: OK to Include Edge
• Simplifying assumption: All edge costs ce are 

distinct.
• Cut property.  Let S be any subset of nodes, and 

let e be the min cost edge with exactly one 
endpoint in S. 
Then the MST T* contains e.

• Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e

• What do we know about T, by defn?
• What do we know about the nodes e connects?
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Proving Cut Property: OK to Include Edge

• Cut property.  Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S. 
Then the MST T* contains e.

• Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e
ØAdding e to T* creates a cycle C in T*

Ø Edge e is in cycle C and in cutset corresponding to S
Þ there exists another edge, say f, that is in

both C and S’s cutset
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Proving Cut Property: OK to Include Edge

• Cut property.  Let S be any subset of nodes, and let 
e be the min cost edge with exactly one endpoint in 
S. Then the MST T* contains e.

• Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e
ØAdding e to T* creates a cycle C in T*
Ø Edge e is in cycle C and in cutset corresponding to S

Þ there exists another edge, say f, that is in 
both C and S’s cutset

Ø T' = T* È { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction.   ▪
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Proving Cycle Property: OK to Remove Edge

• Simplifying assumption: All edge costs ce are 
distinct

• Cycle property. Let C be any cycle in G, and let f 
be the max cost edge belonging to C. Then the 
MST T* does not contain f.
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Ideas about approach?
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Cycle Property: OK to Remove Edge
• Cycle property. Let C be any cycle in G, and 

let f be the max cost edge belonging to C. 
Then the MST T* does not contain f.

• Pf.  (exchange argument)
Ø Suppose f belongs to T*
Ø Deleting f from T* creates a cut S in T*
Ø Edge f is both in the cycle C and in the cutset S

Þ there exists another edge, say e, that is in both C and S
Ø T' = T* È { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction.   ▪
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Summary of What We Proved
• Simplifying assumption: All edge costs ce are distinct

➜ MST is unique
• Cut property.  Let S be any subset of nodes, and let e

be the min cost edge with exactly one endpoint in S.  
Then MST contains e.

• Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  
Then MST does not contain f.
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Cut Property: e is in MST
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Cycle Property: f is not in MST
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Prim’s Algorithm
• Start with some root node s and greedily grow a 

tree T from s outward.
• At each step, add the cheapest edge e to T that 

has exactly one endpoint in T.
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How can we prove its correctness?

[Jarník 1930, Dijkstra 1957, Prim 1959]

Prim’s Algorithm: Proof of Correctness
• Initialize S to be any node
• Apply cut property to S

ØAdd min cost edge (v, u) in cutset corresponding to S, 
and add one new explored node u to S
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Implementation: Prim’s Algorithm

• Maintain set of explored nodes S
• For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest edge v
to a node in S
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foreach (v Î V) a[v] = ¥
Initialize an empty priority queue Q
foreach (v Î V) insert v onto Q
Initialize set of explored nodes S = f
while (Q is not empty) 

u = delete min element from Q
S = S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
decrease priority a[v] to ce

Similar to Dijkstra’s algorithm

Running Time?

Implementation: Prim’s Algorithm

• Maintain set of explored nodes S
• For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest edge v
to a node in S
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foreach (v Î V) a[v] = ¥
Initialize an empty priority queue Q
foreach (v Î V) insert v onto Q
Initialize set of explored nodes S = f
while (Q is not empty) 

u = delete min element from Q
S = S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
decrease priority a[v] to ce

O(deg(u))

O(n)
O(log n)

O(n logn)

O(n)

O(log n)

O(m log n) with a heap

Similar to Dijkstra’s algorithm
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Kruskal’s Algorithm [1956]

• Start with T = f
• Consider edges in ascending order of cost
• Insert edge e in T unless doing so would create a 

cycle

ØAdd edge as long as “compatible”
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How can we prove algorithm’s correctness?

Kruskal’s Algorithm:
Proof of Correctness
• Consider edges in ascending order of weight
• Case 1:  If adding e to T creates a cycle, discard e

according to cycle property (e must be max weight)
• Case 2:  Otherwise, insert e = (u, v) into T according to 

cut property where S = set of nodes in u’s connected 
component
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What is tricky about implementing 
Kruskal’s algorithm?
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Implementing Kruskal’s Algorithm
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What is tricky about implementing Kruskal’s algorithm?

How do we know when adding an edge will create a cycle?
• What are the properties of a graph/its nodes when 

adding an edge will create a cycle?

UNION-FIND 
DATA STRUCTURE
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Union-Find Data Structure

• Keeps track of a graph as edges are added
ØCannot handle when edges are deleted

• Maintains disjoint sets
Ø E.g., graph’s connected components

• Operations/API:
ØFind(u): returns name of set containing u

• How utilized to see if two nodes are in the same set?
• Goal implementation: O(log n)

ØUnion(A, B): merge sets A and B into one set
• Goal implementation: O(log n)
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Best darn Union-Find Data Structure

Implementing Kruskal’s Algorithm
• Using the union-find data structure

ØBuild set T of edges in the MST
ØMaintain set for each connected component
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Sort edge weights so that c1 £ c2 £ ... £ cm
T = {}
foreach (u Î V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets)

T = T È {ei}
merge the sets containing u and v

return T

are u and v in different connected components?

merge two components

Costs?
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Looking Ahead
• Wiki: 4.5-4.7
• PS7 – next Friday
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