
3/4/19

1

Objectives
• Clustering
• Data Compression: Huffman Codes

March 4, 2019 1CSCI211 - Sprenkle

Implementing Kruskal’s Algorithm
• Using the union-find data structure

ØBuild set T of edges in the MST
ØMaintain set for each connected component

Mar 1, 2019 CSCI211 - Sprenkle 2

Sort edge weights so that c1 £ c2 £ ... £ cm
T = {}
foreach (u Î V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets)

T = T È {ei}
merge the sets containing u and v

return T

are u and v in different connected components?

merge two components

Costs?

3/4/19

2

Implementing Kruskal’s Algorithm
• Using best implementation of union-find

Ø Sorting: O(m log n)
ØUnion-find: O(m a (m, n))
ØO(m log n)

Mar 1, 2019 CSCI211 - Sprenkle 3

m £ n2 Þ log m is O(log n)

essentially a constant

Sort edges weights so that c1 £ c2 £ ... £ cm
T = {}
foreach (u Î V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets)

T = T È {ei}
merge the sets containing u and v

return T

are u and v in different connected components?

merge two components

CLUSTERING

Mar 1, 2019 CSCI211 - Sprenkle 4

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

Intersections with
polluted wells

3/4/19

3

Clustering

• Given a set U of n objects (or points) labeled
p1, …, pn, classify into coherent groups
ØProblem: Divide objects into clusters so that points in

different clusters are far apart
• Requires quantification of distance

• Applications
ØRouting in mobile ad hoc networks
Ø Identify patterns in gene expression
Ø Identifying patterns in web application use cases

• Sets of URLs
Ø Similarity searching in medical image databases

Mar 1, 2019 CSCI211 - Sprenkle 5

Clustering: Distance Function
• Numeric value specifying “closeness” of two

objects
• Assume distance function satisfies several

natural properties
Ød(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
Ød(pi, pj) ³ 0 (nonnegativity)
Ød(pi, pj) = d(pj, pi) (symmetry)

Mar 1, 2019 CSCI211 - Sprenkle 6

3/4/19

4

Our Problem:
k-Clustering of Maximum Spacing
• k-clustering. Divide objects into k non-empty

groups
• Spacing. Min distance between any pair of points

in different clusters
• k-clustering of maximum spacing.

Given an integer k,
find a k-clustering of maximum spacing

Mar 1, 2019 CSCI211 - Sprenkle 7

spacing
k = 4

Ideas about solving?

Greedy Clustering Algorithm
• Single-link k-clustering algorithm

Ø Form a graph on the vertex set U, corresponding to n
clusters

Ø Find the closest pair of objects such that each object
is in a different cluster and add an edge between
them

ØRepeat n-k times until there are exactly k clusters

Mar 1, 2019 CSCI211 - Sprenkle 8

How is this related to the MST?

3/4/19

5

Greedy Clustering Algorithm

• Key observation: Same as Kruskal’s algorithm

Ø Except we stop when there are k connected

components

• Remark. Equivalent to finding MST and deleting

the k-1 most expensive edges

Mar 1, 2019 CSCI211 - Sprenkle 9

5

6

4

9

7

11
8

5

6

4

7
8

k=3

MST

Greedy Clustering Algorithm: Analysis
• Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST.
C is a k-clustering of max spacing.

• Pf Intuition:
Ø What can we say about C’s spacing?

• Within clusters and between clusters
Ø What if C isn’t optimal?

• What does that mean about C’s clusters vs (optimal) C*’s
clusters?

Mar 1, 2019 CSCI211 - Sprenkle 10

5

6

4

9

7

11
8

5

6

4

7
8

K=3

MST

3/4/19

6

Greedy Clustering Algorithm: Analysis
• Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

• Pf Sketch. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø The spacing of C is length d of (k-1)st most expensive edge
Ø Let pi, pj be in the same cluster in Greedy solution C (say Cr) but

different clusters in other solution C*, say C*s and C*t

Ø Some edge (p, q) on pi-pj path in Cr spans
two different clusters in C*

Mar 1, 2019 CSCI211 - Sprenkle 11

p qpi pj

C*s C*t

Cr

What do we know about (p, q)?

Greedy

Other
solution

Greedy Clustering Algorithm: Analysis
• Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

• Pf. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø The spacing of C is length d of (k-1)st most expensive edge
Ø Let pi, pj be in the same cluster in C (say Cr) but different clusters in

C*, say C*s and C*t

Ø Some edge (p, q) on pi-pj path in Cr spans
two different clusters in C*

Ø All edges on pi-pj path have length £ d
since Kruskal chose them

Ø Spacing of C* is at most £ d since

p and q are in different clusters

Mar 1, 2019 CSCI211 - Sprenkle 12

p qpi pj

C*s C*t

Cr

Greedy

Other
solution

3/4/19

7

ENCODING

March 4, 2019 CSCI211 - Sprenkle 13

Problem: Encoding

• Computers use bits: 0s and 1s

• Need to represent what we (humans) know to
what computers know

ØMap symbolà unique sequence of 0s and 1s

ØProcess is called encoding

March 4, 2019 CSCI211 - Sprenkle 14

decimal, strings binary decimal, strings

3/4/19

8

Problem: Encoding

• Let’s say we want to encode characters using 0s

and 1s

Ø Lower case letters (26)

Ø Space

ØPunctuation (, . ? ! ')

March 4, 2019 CSCI211 - Sprenkle 15

What is the least number of bits we would
we need to encode these characters?

Problem: Encoding Symbols

• 32 characters to encode

Ø log2(32) = 5 bits

ØCan’t use fewer bits

• Examples:

Ø a à 00000

Øb à 00001

• Actual mapping from character to encoding

doesn’t matter

Ø Easier if have a way to compare …

March 4, 2019 CSCI211 - Sprenkle 16

3/4/19

9

For Long Strings of Characters…
• Do we need an average of 5 bits/character

always?
• What if we could use shorter encodings for

frequently used characters, like a, e, s, t?

• A fundamental problem for data compression
ØRepresent data as compactly as possible

March 4, 2019 CSCI211 - Sprenkle 17

Goal: Optimal encoding that takes advantage
of nonuniformity of letter frequencies

Example: Morse Code
• Used for encoding messages over telegraph
• Example of variable-length encoding

March 4, 2019 CSCI211 - Sprenkle 18

How are letters encoded?
How are letters differentiated?

3/4/19

10

Example: Morse Code
• Used for encoding messages over telegraph
• Example of variable-length encoding
• How are letters encoded?

ØDots, dashes
ØMost frequent letters use shorter sequences

• e à dot; t à dash; a à dot-dash

• How are letters differentiated?
Ø Spaces in between letters

• Otherwise, ambiguous
• adds one more character to each letter

March 4, 2019 CSCI211 - Sprenkle 19

Ambiguity in Morse Code
• Encoding:

Ø e à dot; t à dash; a à dot-dash
• Example: dot-dash-dot-dash could correspond to:

March 4, 2019 CSCI211 - Sprenkle 20

3/4/19

11

Ambiguity in Morse Code
• Encoding:

Ø e à dot; t à dash; a à dot-dash
• Example: dot-dash-dot-dash could correspond to

Ø etet
Ø aa
Ø eta
Ø aet

March 4, 2019 CSCI211 - Sprenkle 21

What’s the cause of the ambiguity?

Problem
• Ambiguity caused by encoding of one character

being a prefix of encoding of another

March 4, 2019 CSCI211 - Sprenkle 22

3/4/19

12

Prefix Codes
• Problem: Encoding of one character being a

prefix of encoding of another à ambiguity
• Solution: Prefix Codes: map letters to bit strings

such that no encoding is a prefix of any other
ØWon’t need artificial devices like spaces to separate

characters
• Example encodings:

ØVerify that no encoding is
a prefix of another

ØWhat is 0010000011101?
March 4, 2019 CSCI211 - Sprenkle 23

a: 11 d: 10
b: 01 e: 000
c: 001

Optimal Prefix Codes
• For typical English messages,

this set of prefix codes is not the optimal set

• Why not?

March 4, 2019 CSCI211 - Sprenkle 24

a: 11 d: 10
b: 01 e: 000
c: 001

3/4/19

13

Optimal Prefix Codes
• For typical English messages,

this set of prefix codes is not the optimal set

• Why not?
Ø ‘e’ is more commonly used than other letters and

should therefore have a shorter encoding

March 4, 2019 CSCI211 - Sprenkle 25

a: 11 d: 10
b: 01 e: 000
c: 001

Optimal Prefix Codes
• Goal: minimize Average number of Bits per

Letter (ABL):
Σx∈Sfrequency of x * length of encoding of x

• fx: frequency that letter x occurs
• γ(x): encoding of x

Ø |γ(x)|: length of encoding of x

• Minimize ABL = Σx∈Sfx |γ(x)|
March 4, 2019 CSCI211 - Sprenkle 26

For all characters in our alphabet

3/4/19

14

Example: Calculating ABL

• ABL = Σx∈Sfx |γ(x)| = ?

March 4, 2019 CSCI211 - Sprenkle 27

fa = .32

fb = .25

fc = .20

fd = .18

fe = .05

a: 11
b: 01
c: 001
d: 10
e: 000

handout

Example: Calculating ABL

• ABL = Σx∈Sfx |γ(x)| = ?
• = .32 * 2 + .25 * 2 + .20 * 3 + .18 * 2 + .05 * 3
• = 2.25

March 4, 2019 CSCI211 - Sprenkle 28

fa = .32

fb = .25
fc = .20
fd = .18

fe = .05

a: 11
b: 01
c: 001
d: 10
e: 000

Consider a fixed-length encoding:
Is it a prefix code? What is its ABL?

3/4/19

15

Fixed-Length Encodings
• Is it a prefix code?

Ø Yes. Always look at fixed number of characters
• What is its ABL?

ØABL is the length of the encoding

• For 5 characters, ABL is 3
• Variable-length prefix code’s ABL (2.25) is an

improvement

March 4, 2019 CSCI211 - Sprenkle 29

Can We Improve the ABL?

March 4, 2019 CSCI211 - Sprenkle 30

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11
b: 01
c: 001
d: 10
e: 000

3/4/19

16

Can We Improve the ABL?

• ABL = Σx∈Sfx |γ(x)| = 2.23

March 4, 2019 CSCI211 - Sprenkle 31

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11
b: 01
c: 001
d: 10
e: 000

Swap these because c
occurs more frequently
than d.
Give c the shorter
encoding

Problem Statement
• Given an alphabet and a set of frequencies for

the letters, produce optimal (most efficient)
prefix code
ØMinimizes average # of bits per letter (ABL)

March 4, 2019 CSCI211 - Sprenkle 32

3/4/19

17

Approaches to Solution
• Brute force

Ø Search space is complicated à all ways to map
letters to bit strings that adhere to prefix code
property

• Build towards greedy approach
Ø Start: representing prefix codes

• Given we know the codes, how do we represent
them?

March 4, 2019 CSCI211 - Sprenkle 33

Binary Trees to Represent Prefix Codes
• Exposes structure better than list of mappings

Ø Each leaf node is a letter
Ø Follow path to the letter

• Going left: 0
• Going right: 1

March 4, 2019 CSCI211 - Sprenkle 34

Are these really prefix codes?
How could we show they weren’t?

3/4/19

18

Binary Trees to Represent Prefix Codes
• Structure: Each leaf node is a letter

Ø Follow path to the letter
• Going left: 0; Going right: 1

• Proof. If it weren’t:
a letter’s encoding is a prefix of another letter
Ø Letter is in the path of another letter
ØBut, all letters are leaf nodes

• Contradiction

March 4, 2019 CSCI211 - Sprenkle 35

Looking Ahead
• Wiki: 4.5-4.7
• Problem Set 6 due Friday

March 4, 2019 CSCI211 - Sprenkle 36

