Objectives

Clustering
Data Compression: Huffman Codes

March 4, 2019 CSCI211 - Sprenkle

Implementing Kruskal’s Algorithm

Using the union-find data structure

Build set T of edges in the MST
Maintain set for each connected component

Costs?
Sort edge weights so that c1 < c; < ... < Cq
T={}
foreach (u € V) make a set containing singleton u
for i =1tom are u and v in different connected components?
u,v) = e
if (u and v are in different sets)
T=Tu {ei}
merge the sets containing u and v
return T

merge two components

Mar 1, 2019 CSCI211 - Sprenkle

3/4/19

Implementing Kruskal’s Algorithm

Using best implementation of union-find
» Sorting: O(m log n) +——m<n?=logmis O(log n)
» Union-find: O(m a (m, n))

” O(m IOg n) essentially a constant

IN

Sort edges weights so that ¢; < ¢c; < ... < Cp
T=1{}

foreach (u € V) make a set containing singleton u

for i =1tom are u and v in different connected components?
u,v) = e
if (u and v are in different sets)
T=Tu {ei}
merge the sets containing u and v
return T

merge two components

Mar 1, 2019 CSCI211 - Sprenkle

Intersections with
polluted wells

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

CLUSTERING

Mar 1, 2019 CSCI211 - Sprenkle

3/4/19

Clustering

Given a set U of n objects (or points) labeled
P1, ..., Pn, Classify into coherent groups

» Problem: Divide objects into clusters so that points in
different clusters are far apart

Requires quantification of distance
Applications
» Routing in mobile ad hoc networks
» ldentify patterns in gene expression
» |ldentifying patterns in web application use cases
Sets of URLs
» Similarity searching in medical image databases

Mar 1, 2019 CSCI211 - Sprenkle 5

Clustering: Distance Function

Numeric value specifying “closeness” of two
objects

Assume distance function satisfies several
natural properties
»d(p;, p;) = 0iff p;=p; (identity of indiscernibles)
»d(p;, p;) 20 (nonnegativity)
» d(p;, p;) =d(p;, p) (symmetry)

Mar 1, 2019 CSCI211 - Sprenkle 6

3/4/19

3/4/19

Our Problem:

k-Clustering of Maximum Spacing
k-clustering. Divide objects into k non-empty
groups
Spacing. Min distance between any pair of points
in different clusters

k-clustering of maximum spacing.

Given an integer k,
find a k-clustering of maximum spacing

°
k=4)
°.° XXX
° o 00° eooe

Mar 1, 2019 CSCI211 - Sprenkle

Ideas about solving?

Greedy Clustering Algorithm

Single-link k-clustering algorithm
» Form a graph on the vertex set U, corresponding to n
clusters

» Find the closest pair of objects such that each object
is in a different cluster and add an edge between
them

» Repeat n-k times until there are exactly k clusters

How is this related to the MST?

Mar 1, 2019 CSCI211 - Sprenkle 8

Greedy Clustering Algorithm

Key observation: Same as Kruskal’s algorithm

Except we stop when there are k connected
components

Remark. Equivalent to finding MST and deleting
the k-1 most expensive edges

+—@ / —@ _ ®
./\ (,\r\ 9 ./\ 6 k=3
["< \7\ ~e Y
J 5 J o
MST
Mar 1, 2019 CSCI211 - Sprenkle

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering Cy, ..., C, formed by
deleting the k-1 most expensive edges of a MST.

Cis a k-clustering of max spacing.

Pf Intuition:

What can we say about C’s spacing?
Within clusters and between clusters
What if Cisn’t optimal?

What does that mean about C’s clusters vs (optimal) C*’s
clusters?

< St e
7\\.//‘(T o
J . J N

Mar 1, 2019 MST CSCI211 - Sprenkle 10

3/4/19

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C, ..., C, formed by
deleting the k-1 most expensive edges of a MST.
Cis a k-clustering of maximum spacing.

Pf Sketch. Let C* denote some other clustering C*,, ..., C¥.
C* and C must be different; otherwise we’re done.
» The spacing of Cis length d of (k-1)st most expensive edge

» Let p, p; be in the same cluster in Greedy solution C (say C,) but
different clusters in other solution C*, say C*; and C*,

» Some edge (p, q) on p;-p;path in C, spans Other
two different clusters in C* C% \\ / ©* solution
c !

What do we know about (p, g)? ‘ . o | |\ o o

[] .//—h. []

é pi P \ q j

/
Mar 1, 2019 CSCI211 - Sprenkle Greed)’ // \\ 11

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C;, ..., C, formed by
deleting the k-1 most expensive edges of a MST.
Cis a k-clustering of maximum spacing.

Pf. Let C* denote some other clustering C*, ..., C¥,.
C* and C must be different; otherwise we’re done.
» The spacing of Cis length d of (k-1)st most expensive edge
~ Let p;, p; be in the same cluster in C (say C,) but different clusters in
C*, say C*;and C*,
» Some edge (p, q) on p;-p; path in C, spans

. Other
two different clusters in C* St \\ //C"solution
» All edges on pi-p; path have length < d C \ !
since Kruskal chose them . e || o o
» Spacing of C* is at most < d since y // \ R
p and g are in different clusters ¢ P P/ L
Mar 1, 2019 CSCI211 - Sprenkle Greedy // \\ 12

3/4/19

ENCODING

March 4, 2019 CSCI211 - Sprenkle 13

Problem: Encoding

Computers use bits: Os and 1s

Need to represent what we (humans) know to
what computers know

. W o, €O
— - —
decimal, strings decimal, strings

» Map symbol = unique sequence of Os and 1s
» Process is called encoding

March 4, 2019 CSCI211 - Sprenkle 14

3/4/19

Problem: Encoding

Let’s say we want to encode characters using Os
and 1s

Lower case letters (26)
Space
Punctuation(, . 2 ! ")

What is the least number of bits we would
we need to encode these characters!?

March 4, 2019 CSCI211 - Sprenkle 15

Problem: Encoding Symbols

32 characters to encode
log,(32) =5 bits
Can’t use fewer bits
Examples:
a = 00000
b = 00001

Actual mapping from character to encoding
doesn’t matter

Easier if have a way to compare ...

March 4, 2019 CSCI211 - Sprenkle 16

3/4/19

For Long Strings of Characters...
Do we need an average of 5 bits/character
always?

What if we could use shorter encodings for
frequently used characters, like a, e, s, t?

Goal: Optimal encoding that takes advantage

of nonuniformity of letter frequencies

A fundamental problem for data compression
» Represent data as compactly as possible

March 4, 2019 CSCI211 - Sprenkle 17

Example: Morse Code

Used for encoding messages over telegraph
Example of variable-length encoding

How are letters encoded?
How are letters differentiated?

March 4, 2019 CSCI211 - Sprenkle 18

3/4/19

Example: Morse Code

Used for encoding messages over telegraph
Example of variable-length encoding
How are letters encoded?

Dots, dashes

Most frequent letters use shorter sequences
e = dot; t = dash; a 2 dot-dash

How are letters differentiated?

Spaces in between letters
Otherwise, ambiguous
adds one more character to each letter

March 4, 2019 CSCI211 - Sprenkle

19

Ambiguity in Morse Code

Encoding:
e = dot; t = dash; a = dot-dash

Example: dot-dash-dot-dash could correspond to:

March 4, 2019 CSCI211 - Sprenkle

20

3/4/19

Ambiguity in Morse Code

Encoding:
e = dot; t 2 dash; a 2 dot-dash
Example: dot-dash-dot-dash could correspond to
etet
ad
eta
aet

What'’s the cause of the ambiguity?

March 4, 2019 CSCI211 - Sprenkle 21

Problem

Ambiguity caused by encoding of one character
being a prefix of encoding of another

March 4, 2019 CSCI211 - Sprenkle 22

3/4/19

Prefix Codes

Problem: Encoding of one character being a
prefix of encoding of another = ambiguity

Solution: Prefix Codes: map letters to bit strings

such that no encoding is a prefix of any other
Won’t need artificial devices like spaces to separate
characters

Example encodings:
_ o a: 11 d: 10
Verify that no encoding is b: 01 e: 000

a prefix of another c: 001

What is 0100000111017

March 4, 2019 CSCI211 - Sprenkle 23

Optimal Prefix Codes

For typical English messages,
this set of prefix codes is not the optimal set

a: 11 d: 10
b: 01 e: 000
c: 001

Why not?

March 4, 2019 CSCI211 - Sprenkle 24

3/4/19

Optimal Prefix Codes

For typical English messages,
this set of prefix codes is not the optimal set

a: 11 d: 10
b: 01 e: 000
c: 001

Why not?

‘e’ is more commonly used than other letters and
should therefore have a shorter encoding

March 4, 2019 CSCI211 - Sprenkle 25

Optimal Prefix Codes

Goal: minimize Average number of Bits per
Letter (ABL):

2. csfrequency of x * length of encoding of x

\

f,: frequency that letter x occurs

For all characters in our alphabet

v(x): encoding of x
|v(x)|: length of encoding of x

Minimize ABL =[ersfx lv(x)]]

March 4, 2019 CSCI211 - Sprenkle 26

3/4/19

Example: Calculating ABL

f,=.32 a: 11
f,=.25 b: 01
f.= 20 c: 001
(- 18 d: 10
= e: 000
fe=.05

ABL = Z,e6f, |v(X)] =7

handout
March 4, 2019 CSCI211 - Sprenkle

Example: Calculating ABL

faz-?’2 a: 11
fb=~25 b: 8%1
f.=.20 c

(= 18 d: 10
d=- e: 000
f.=.05

ABL = 2,esfy [V(x)| =72
=.32%2+.25%2+.20%3+.18 %2 +.05 *3
=2.25

Consider a fixed-length encoding:
Is it a prefix code? What is its ABL?

March 4, 2019 CSCI211 - Sprenkle

28

3/4/19

Fixed-Length Encodings

Is it a prefix code?

Yes. Always look at fixed number of characters
What is its ABL?

ABL is the length of the encoding

For 5 characters, ABL is 3

Variable-length prefix code’s ABL (2.25) is an
improvement

March 4, 2019 CSCI211 - Sprenkle 29

Can We Improve the ABL?

fa=.32 a: 11

f.=.20 c: 001
d: 10

fy=.18

¢ e: 000

f.=.05

March 4, 2019 CSCI211 - Sprenkle 30

3/4/19

Can We Improve the ABL?

f,=.32 a: 11
fo=.25 b: 01
f.=.20 c: 001 Swap these because ¢
fy=.18 d: 10 ‘k occurs more frequently
f.= .05 e: 000 than d.
Give c the shorter
encoding

ABL = 2, f, |y(x)]| =2.23

March 4, 2019 CSCI211 - Sprenkle 31

Problem Statement

Given an alphabet and a set of frequencies for
the letters, produce optimal (most efficient)
prefix code

Minimizes average # of bits per letter (ABL)

March 4, 2019 CSCI211 - Sprenkle 32

3/4/19

Approaches to Solution

Brute force

Search space is complicated = all ways to map
letters to bit strings that adhere to prefix code
property

Build towards greedy approach

Start: representing prefix codes

Given we know the codes, how do we represent
them?

March 4, 2019 CSCI211 - Sprenkle 33

Binary Trees to Represent Prefix Codes

Exposes structure better than list of mappings
Each leaf node is a letter
Follow path to the letter

Going left: 0
Going right: 1

Are these really prefix codes?
How could we show they weren’t?

March 4, 2019 CSCI211 - Sprenkle 34

3/4/19

Binary Trees to Represent Prefix Codes

Structure: Each leaf node is a letter
Follow path to the letter
Going left: 0; Going right: 1
Proof. If it weren’t:
a letter’s encoding is a prefix of another letter

Letter is in the path of another letter

But, all letters are leaf nodes
Contradiction

March 4, 2019 CSCI211 - Sprenkle

35

Looking Ahead

Wiki: 4.5-4.7
Problem Set 6 due Friday

March 4, 2019 CSCI211 - Sprenkle

36

3/4/19

