Objectives

- Review Huffman Codes
- Introducing Divide and Conquer Algorithms

Towards Huffman Codes

- What problem are we trying to solve?
- Binary tree rules:
$>$ Each leaf node is a letter
> Follow path to the letter
- Going left: 0
- Going right: 1

$$
\begin{aligned}
& \text { Code: } \\
& \mathrm{a} \rightarrow 1 \\
& \mathrm{~b} \rightarrow 011 \\
& \mathrm{c} \rightarrow 010 \\
& \mathrm{~d} \rightarrow 001 \\
& \mathrm{e} \rightarrow 000
\end{aligned}
$$

Given the mapping, how do you build the binary tree for this mapping?

Recursively Generate Tree

- All letters are in root node
- For all letters in node
$>$ If encoding begins with 0 , letter belongs in left subtree
$>$ Otherwise (encoding begins with 1), letter belongs in right subtree
$>$ If last bit of encoding, make the letter a leaf node of that subtree
$>$ Shift encoding one bit
$>$ Process left and right children

Tree Properties

- What is the length of a letter's encoding?
- Define our optimal goal in tree terms

Tree Properties

- What is the length of a letter's encoding?
$>$ Length of path from root to leaf \rightarrow its depth
- Define our optimal goal in tree terms
$\Rightarrow A B L=\Sigma_{x \in S} f_{x}|\gamma(x)|=\Sigma_{x \in S} f_{x} \operatorname{depth}(x)$

Tree Properties

- What do we want our tree to look like for the optimal solution?
$>$ How many leaves?
$>$ How many internal nodes?
- Think about parent nodes vs. child nodes
$>$ When uniform frequencies?
$>$ Nonuniform frequencies?

Tree Properties

- Claim. The binary tree T corresponding to the optimal prefix code is full, i.e., each internal node has two children.
- Proof?

Tree Properties

- Claim. The binary tree T corresponding to the optimal prefix code is full, i.e., each internal node has two children.
- Proof. Assume that T has an internal node with only one child
$>$ Without loss of generality, assume left child

Tree Properties

- Claim. The binary tree T corresponding to the optimal prefix code is full, i.e., each internal node has two children.
- Proof. Assume that T has an internal node with only one child

Replace u with $v \rightarrow$ decrease depth \rightarrow original wasn't optimal

Toward a Solution...

- Two problems to solve:
$>$ Creating the prefix code tree
$>$ Labeling the prefix code tree with alphabet/frequencies

Simplifying: Know Optimal Prefix Code

- Process: assume knowledge of optimal solution to gain insight into finding solution
- Assume we knew the tree structure of the optimal prefix code, how would you label the leaf nodes?

Combining Our Conclusions

- The binary tree corresponding to the optimal prefix code is full, i.e., each internal node has two children
- We want to label the leaf nodes of the binary tree corresponding to the optimal prefix code such that nodes with greatest depth have least frequency

> What does this mean the bottom of our tree should look like?

Combining Our Conclusions

- The binary tree corresponding to the optimal prefix code is full, i.e., each internal node has two children
- We want to label the leaf nodes of the binary tree corresponding to the optimal prefix code such that nodes with greatest depth have least frequency

What does this mean the bottom of our tree should look like?

How Can We Use This?

Two letters with least frequency are definitely going to be siblings
$>$ Tie them together
$>$ Their parent is a "meta-letter"

- Frequency is sum of $f_{n}+f_{n-1}$

Constructing an Optimal Prefix Code

Huffman's Algorithm:

To construct a prefix code for an alphabet S with given frequencies:

```
if S has two letters:
```

Encode one letter as 0 and the other letter as 1
Replace lowest-freq
else: letters with meta letter
Let y^{*} and z^{*} be the two lowest-frequency letters
© Form a new alphabet S^{\prime} by deleted y^{*} and z^{*} and replacing them with a new letter w of freq $f_{y^{*}}+f_{z^{*}}$
\simeq Recursively construct a prefix code y ' for S ' with tree T, Define a prefix code for S as follows:
O Start with T,
을 Take the leaf labeled w and add two children below it labeled y^{*} and z^{*}

Constructing an Optimal Prefix Code:

 Alternative Description1. Create a leaf node for each symbol, labeled by its frequency, and add to a queue
2. While there is more than one node in the queue
a) Remove the two nodes of lowest frequency
b) Create a new internal node with these two nodes as children and with frequency equal to the sum of the two nodes' probabilities
c) Add the new node to the queue
3. The remaining node is the tree's root node

Creating the Optimal Prefix Code

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{a}}=.32 \\
& \mathrm{f}_{\mathrm{b}}=.25 \\
& \mathrm{f}_{\mathrm{c}}=.20 \\
& \mathrm{f}_{\mathrm{d}}=.18 \\
& \mathrm{f}_{\mathrm{e}}=.05 \\
& \hline
\end{aligned}
$$

Creating the Optimal Prefix Code

$$
f_{a}=.32
$$

$$
f_{b}=.25
$$

$$
\mathrm{f}_{\mathrm{c}}=.20
$$

$$
\mathrm{f}_{\mathrm{d}}=.18 \longleftrightarrow
$$

Lowest frequencies

$$
\mathrm{f}_{\mathrm{e}}=.05
$$

Merge

Creating the Optimal Prefix Code

$f_{a}=.32$
$\mathrm{f}_{\mathrm{b}}=.25$
$\mathrm{f}_{\mathrm{c}}=.20 \longleftarrow$ Lowest frequencies
$\mathrm{f}_{\mathrm{de}}=.23 \rightleftarrows$ Merge

Creating the Optimal Prefix Code

$\mathrm{f}_{\mathrm{a}}=.32 \longleftarrow \quad$ Lowest frequencies
$f_{b}=25 \backsim$ Merge
$\mathrm{f}_{\text {cde }}=.43$

Creating the Optimal Prefix Code

Creating the Optimal Prefix Code

a: 00
$\mathrm{f}_{\mathrm{a}}=.32$
b: 01
c: 10
d: 110
e: 111

$\mathrm{f}_{\mathrm{d}}=.18$
$\mathrm{f}_{\mathrm{e}}=.05$

b

ABL=.32*2 + .25*2 + . $20 * 2+.18 * 3+.05 * 3$
$=.64+.5+.4+.54+.15$
$=2.23$
I chose to build the tree this way.
March 6, 2019
What if I had switched the order of the children?

Implementation

- What data structures do we need?

Implementation

- What data structures do we need?
> Binary tree for the prefix codes
$>$ Priority queue for choosing the node with lowest frequency
- Where are the costs?

Running Time

- Costs
$>$ Inserting and extracting node into PQ: O(log n)
$>$ Number of insertions and extractions: $\mathrm{O}(\mathrm{n})$
$>\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Analysis of Algorithm's Optimality

- 2 page proof in book

Real-life Compression

- Text can be compressed well because of known frequencies
- Algorithms can be optimized to languages
$>$ More than just "z doesn't happen very often"
- "z doesn't happen after q"

DIVIDE AND CONQUER ALGORITHMS

Divide-and-Conquer

- Divide-and-conquer process
$>$ Break up problem into several parts
$>$ Solve each part recursively
$>$ Combine solutions to sub-problems into overall solution
Most common usage:
> Break up problem of size n into two equal parts of size $1 / 2 n$
$>$ Solve two parts recursively
$>$ Combine two solutions into overall solution

Discussion

- What is a well-known divide and conquer algorithm?
Merge Sort

Merge Sort

- How does Merge Sort work?
- When do we stop?

RECURRENCE RELATIONS

Analyzing Merge Sort

General Template

- Break up problem of size n into two equal parts of size $1 / 2 n$
- Solve two parts recursively
- Combine two solutions into overall solution
- Def. $\mathrm{T}(\mathrm{n})=$ number of comparisons to mergesort an input of size n
- Want to say a bit more about what $T(n)$ is
>Break it down more...
What can we say about the running time w.r.t. to the different parts of the above template?

Analyzing Merge Sort

General Template

- Break up problem of size n into two equal parts of $\mathbf{O}(\mathbf{I})$ size $1 / 2 n$
- Solve two parts recursively $\quad \mathbf{T}(\mathbf{n} / \mathbf{2})+\mathbf{T}(\mathbf{n} / \mathbf{2})$
- Combine two solutions into overall solution $\mathbf{O (n)}$
- Def. $\mathrm{T}(\mathrm{n})=$ number of comparisons to mergesort an input of size n
- Want to say a bit more about what $T(n)$ is
>Break it down more...
What is the base case? Its running time?

Merge Sort's Recurrence Relation

```
MergeSort( L[1...n] ):
    if len(L) == 1:
        return L Base cases
    if len(L) == 2:
            compare the two entries in L,
            swap if necessary
            return L
    A = MergeSort(L[:n/2]) T(n/2)
    B = MergeSort(L[n/2+1:]) T(n/2)
    M = Merge(A,B) O(n)
    return M
```

$$
T(n)=2 T(n / 2)+O(n)
$$

Looking Ahead
 - Problem Set 6 due Friday

