
3/6/19

1

Objectives

• Review Huffman Codes

• Introducing Divide and Conquer Algorithms

March 6, 2019 CSCI211 - Sprenkle 1

Towards Huffman Codes
• What problem are we trying to solve?
• Binary tree rules:

Ø Each leaf node is a letter
Ø Follow path to the letter

• Going left: 0
• Going right: 1

March 6, 2019 CSCI211 - Sprenkle 2

Given the mapping, how do you build
the binary tree for this mapping?

3/6/19

2

Recursively Generate Tree
• All letters are in root node
• For all letters in node

Ø If encoding begins with 0, letter belongs in left
subtree

ØOtherwise (encoding begins with 1), letter belongs in
right subtree

Ø If last bit of encoding, make the letter a leaf node of
that subtree

Ø Shift encoding one bit
ØProcess left and right children

March 6, 2019 CSCI211 - Sprenkle 3

Tree Properties
• What is the length of a letter’s encoding?

• Define our optimal goal in tree terms

March 6, 2019 CSCI211 - Sprenkle 4

3/6/19

3

Tree Properties
• What is the length of a letter’s encoding?

Ø Length of path from root to leaf à its depth
• Define our optimal goal in tree terms

ØABL = Σx∈Sfx |γ(x)| = Σx∈Sfx depth(x)

March 6, 2019 CSCI211 - Sprenkle 5

Tree Properties
• What do we want our tree to look like for the

optimal solution?
ØHow many leaves?
ØHow many internal nodes?

• Think about parent nodes vs. child nodes
ØWhen uniform frequencies?
ØNonuniform frequencies?

March 6, 2019 CSCI211 - Sprenkle 6

3/6/19

4

Tree Properties
• Claim. The binary tree T corresponding to the

optimal prefix code is full, i.e., each internal node
has two children.

• Proof?

March 6, 2019 CSCI211 - Sprenkle 7

Tree Properties
• Claim. The binary tree T corresponding to the

optimal prefix code is full, i.e., each internal node
has two children.

• Proof. Assume that T has an internal node with
only one child
ØWithout loss of generality, assume left child

March 6, 2019 CSCI211 - Sprenkle 8

u

v:
root of
Subtree

u

v

? ?

3/6/19

5

Tree Properties
• Claim. The binary tree T corresponding to the

optimal prefix code is full, i.e., each internal node
has two children.

• Proof. Assume that T has an internal node with
only one child

March 6, 2019 CSCI211 - Sprenkle 9

u

v:
root of
Subtree

u

v

v

Replace u with và decrease depth à original wasn’t optimal

v:
root of
Subtree

Toward a Solution…

• Two problems to solve:

ØCreating the prefix code tree

Ø Labeling the prefix code tree with

alphabet/frequencies

March 6, 2019 CSCI211 - Sprenkle 10

3/6/19

6

Simplifying: Know Optimal Prefix Code
• Process: assume knowledge of optimal solution to

gain insight into finding solution
• Assume we knew the tree structure of the optimal

prefix code, how would you label the leaf nodes?

March 6, 2019 CSCI211 - Sprenkle 11

In
cr
ea
si
ng

fr
eq
ue
nc
y

Combining Our Conclusions

• The binary tree corresponding to the optimal

prefix code is full, i.e., each internal node has

two children

• We want to label the leaf nodes of the binary

tree corresponding to the optimal prefix code

such that nodes with greatest depth have least
frequency

March 6, 2019 CSCI211 - Sprenkle 12

What does this mean the
bottom of our tree should look like?

3/6/19

7

Combining Our Conclusions

• The binary tree corresponding to the optimal

prefix code is full, i.e., each internal node has

two children

• We want to label the leaf nodes of the binary

tree corresponding to the optimal prefix code

such that nodes with greatest depth have least
frequency

March 6, 2019 CSCI211 - Sprenkle 13

What does this mean the bottom
of our tree should look like?

fn-1fn
2 letters with least

frequency:

Could be flipped

How Can We Use This?
• Two letters with least frequency are definitely

going to be siblings
Ø Tie them together
Ø Their parent is a “meta-letter”

• Frequency is sum of fn + fn-1

March 6, 2019 CSCI211 - Sprenkle 14

fn + fn-1

fn-1fn2 letters with
least frequency:

Could be flipped

Meta-letter:

3/6/19

8

Constructing an Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 15

Huffman’s Algorithm:

Replace lowest-freq
letters with meta letter

R
ed

uc
e

Bu
ild

 u
p

To construct a prefix code for an alphabet S with given
frequencies:

if S has two letters:
Encode one letter as 0 and the other letter as 1

else:
Let y* and z* be the two lowest-frequency letters
Form a new alphabet S’ by deleted y* and z* and replacing

them with a new letter w of freq fy* + fz*
Recursively construct a prefix code y’ for S’ with tree T’
Define a prefix code for S as follows:

Start with T’
Take the leaf labeled w and add two children below it

labeled y* and z*

Constructing an Optimal Prefix Code:
Alternative Description
1. Create a leaf node for each symbol, labeled by

its frequency, and add to a queue
2. While there is more than one node in the queue

a) Remove the two nodes of lowest frequency
b) Create a new internal node with these two nodes as

children and with frequency equal to the sum of the
two nodes' probabilities

c) Add the new node to the queue
3. The remaining node is the tree’s root node

March 6, 2019 CSCI211 - Sprenkle 16

3/6/19

9

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 17

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 18

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ed
ca b

de=
.23

Lowest frequencies
Merge

3/6/19

10

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 19

fa = .32
fb = .25
fc = .20
fde = .23

ed

c

a b

de=
.23

Lowest frequencies
Merge

cde=
.43

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 20

fa = .32
fb = .25
fcde = .43

ed

ca b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

3/6/19

11

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 21

fab = .57
fcde = .43

ed

ca b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

abcde
=1

What are the resulting encodings?
What is the ABL?

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

March 6, 2019 CSCI211 - Sprenkle 22

ed

ca b
de=
.23

cde=
.43

ab=
.57

abcde
=10

0 0

0

1

1 1

1

a: 00
b: 01
c: 10
d: 110
e: 111

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
= .64 + .5 + .4 + .54 + .15
= 2.23

I chose to build the tree this way.
What if I had switched the order of the children?

3/6/19

12

Implementation
• What data structures do we need?

March 6, 2019 CSCI211 - Sprenkle 23

Implementation
• What data structures do we need?

ØBinary tree for the prefix codes
ØPriority queue for choosing the node with lowest

frequency

• Where are the costs?

March 6, 2019 CSCI211 - Sprenkle 24

3/6/19

13

Running Time

• Costs

Ø Inserting and extracting node into PQ: O(log n)

ØNumber of insertions and extractions: O(n)

Ø O(n log n)

March 6, 2019 CSCI211 - Sprenkle 25

Analysis of Algorithm’s Optimality
• 2 page proof in book

March 6, 2019 CSCI211 - Sprenkle 26

3/6/19

14

Real-life Compression
• Text can be compressed well because of known

frequencies
• Algorithms can be optimized to languages

ØMore than just “z doesn’t happen very often”
• “z doesn’t happen after q”

March 6, 2019 CSCI211 - Sprenkle 27

DIVIDE AND CONQUER
ALGORITHMS

March 6, 2019 CSCI211 - Sprenkle 28

3/6/19

15

Divide-and-Conquer
• Divide-and-conquer process

ØBreak up problem into several parts
Ø Solve each part recursively
ØCombine solutions to sub-problems into overall

solution
• Most common usage:

ØBreak up problem of size n into two equal parts of
size ½n

Ø Solve two parts recursively
ØCombine two solutions into overall solution

March 6, 2019 CSCI211 - Sprenkle 29

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Discussion
• What is a well-known divide and conquer

algorithm?

March 6, 2019 CSCI211 - Sprenkle 30

Merge Sort

3/6/19

16

Merge Sort
• How does Merge Sort work?

• When do we stop?

March 6, 2019 CSCI211 - Sprenkle 31

Merge Sort

March 6, 2019 CSCI211 - Sprenkle 32

Divide list
into two lists

Until only 2
elements

Sort elements

Combine sorted
lists (how?)

3/6/19

17

RECURRENCE RELATIONS

March 6, 2019 CSCI211 - Sprenkle 33

Analyzing Merge Sort

• Def. T(n) = number of comparisons to mergesort
an input of size n

• Want to say a bit more about what T(n) is
ØBreak it down more…

March 6, 2019 CSCI211 - Sprenkle 34

General Template
• Break up problem of size n into two equal parts of

size ½n
• Solve two parts recursively
• Combine two solutions into overall solution

What can we say about the running time w.r.t. to
the different parts of the above template?

3/6/19

18

Analyzing Merge Sort

• Def. T(n) = number of comparisons to mergesort
an input of size n

• Want to say a bit more about what T(n) is
ØBreak it down more…

March 6, 2019 CSCI211 - Sprenkle 35

General Template
• Break up problem of size n into two equal parts of

size ½n
• Solve two parts recursively
• Combine two solutions into overall solution O(n)

T(n/2) + T(n/2)

O(1)

What is the base case? Its running time?

Merge Sort’s Recurrence Relation

March 6, 2019 CSCI211 - Sprenkle 36

MergeSort(L[1…n]):
if len(L) == 1:

return L
if len(L) == 2:

compare the two entries in L,
swap if necessary
return L

A = MergeSort(L[:n/2])
B = MergeSort(L[n/2+1:])
M = Merge(A, B)
return M

T(n/2)
T(n/2)
O(n)

T(n) = 2T(n/2) + O(n)

Base cases

3/6/19

19

Looking Ahead
• Problem Set 6 due Friday

March 6, 2019 CSCI211 - Sprenkle 37

