Objectives

Divide and conquer algorithms
Recurrence relations
Counting inversions

March 8, 2019 CSCI211 - Sprenkle

Review

What approach are we learning to solve
problems (as of Wednesday)?

What is the recurrence relation for merge sort?

What is a recurrence relation in general?

March 8, 2019 CSCI211 - Sprenkle

3/8/19

Merge Sort’s Recurrence Relation

T(n) = number of comparisons to mergesort an
input of size n
Goal: put an upperbound on T(n):

0

For some constant c,
T(n) £2T(n/2) +cn whenn> 2,
T(2)<c basecase

Solve T(n) to come up with explicit bound

March 8, 2019 CSCI211 - Sprenkle

Approaches to Solving Recurrences

Unroll recursion
Look for patterns in runtime at each level
Sum up running times over all levels

Substitute guess solution into recurrence
Check that it works

Induction on n

March 8, 2019 CSCI211 - Sprenkle

3/8/19

Unrolling Recurrence: T(n)

March 8, 2019 CSCI211 - Sprenkle 5

Unrolling Recurrence: 2 T(n/2) + cn

First level: 2 T(n/2) + cn ‘/‘\

T(/2) T(n/2)

How does the next level break down?

March 8, 2019 CSCI211 - Sprenkle 6

3/8/19

Unrolling Recurrence: 2 T(n/2) + cn

ch

Next level: /\

cn/2 cn/2

VANVAN

T(n/4) T(n/4) T(n/4) T(n/4)

Each oneis 2 T(n/4) + ¢c(n/2)

Next level?

March 8, 2019 CSCI211 - Sprenkle 7

Unrolling Recurrence

ch

Next level:
Each oneis 2 T(n/8) + c(n/4) /\

cn/2 cn/2
cn/4 cn/4 cn/4 cn/4
T(/8) T(n/8) °°* T(n8) T(n/8)

And so on...

What does the final level look like?

March 8, 2019 CSCI211 - Sprenkle 8

3/8/19

3/8/19

Unrolling Recurrence

How much does each level cost, in terms of the level?
How many levels are there (assuming n is a power of 2)?

What is the total run time?

A/\c‘n/4 cn‘/4/\c:1/42
l/\ A AN
LA LA A A

March 8, 2019 CSCI211 - Sprenkle

Unrolling Recurrence

How many levels are there (assuming n is a power of 2)?
How much does each level cost, in terms of the level?

What is the total run time?

cn 0 T(n)

Number of levels: log;n /\

cn/2 cn/2 |
2 problems /\ /\
Size: n/2 ¢ nl4 cnl4 ¢ n/4 cnl4 2
Each level takes | /\ /\ /\ I\ |
2k* ¢ * (n/24) = cn / \ / \ j \ 1 \

c C c c c c T2

O(n log n) c c

March 8, 2019 CSCI211 - Sprenkle 10

Alternative: Proof by Induction

Claim. If T(n) satisfies the recurrence
T(n) £2T(n/2) + cn, then T(n) < cn log, n.

Pf. (by induction on n)

» Base case: n=2
» Inductive hypothesis: T(n) <cnlog, n
» Goal: show that T(2n) £ 2cn log, (2n)

| Why doubling n?

March 8, 2019 CSCI211 - Sprenkle 11

Proof by Induction

Claim. If T(n) satisfies the recurrence
T(n) £2T(n/2) + cn, then T(n) < cn log, n.
Pf. (by induction on n)

» Inductive hypothesis: T(n) < cn log, n

» Goal: show that T(2n) £ 2cn log, (2n)

T(2n) <2T(n) + c2n *Recurrence relation

< 2cn (logy(2n)-1) + 2cn |* Log rules: what is the
< 2cn logy(2n) - 2¢cn + 2cn | difference between
< 2¢n logy(2n) V/ log,(2n) and log,(n)?

March 8, 2019 CSCI211 - Sprenkle 12

< 2cn logon + 2¢n * Replace T(n) w/ induction hypothesis

3/8/19

Another Recurrence Relation:
Binary Search

How does binary search work?
What is its recurrence relation?

March 8, 2019 CSCI211 - Sprenkle 13

Analyzing Binary Search

BinarySearch(L[1..n], key):
if len(L) == 1 and L[1] == key:
return 1 #return the index
else:
return NOT_FOUND
mid = n/2
i1f L[mid] == key:
return mid #return the index
if L[mid] < key:
return BinarySearch(L[mid+1:], key)
else:
return BinarySearch(L[:mid], key)

What is the recurrence relation?

March 8, 2019 CSCI211 - Sprenkle 14

3/8/19

Analyzing Binary Search

BinarySearch(L[1..n], key):
if len(L) == 1 and L[1] == key:
return 1 #return the index
else:
return NOT_FOUND
mid = n/2
if L[mid] == key:
return mid #return the index
if L[mid] < key:
return BinarySearch(L[mid+1:], key)
else:
return BinarySearch(L[:mid], key)

What is the recurrence relation?

March 8, 2019 T(n) =T(n/2) +c 15

Unroll the Recurrence

T(n)=T(n/2) +c

Which makes the runtime?

March 8, 2019 CSCI211 - Sprenkle 16

3/8/19

Unroll the Recurrence

T(n) =T(n/2) +c
Constant work at each level

Number of levels: log n

Which makes the runtime? O(log n)

March 8, 2019 CSCI211 - Sprenkle 17

Another Recurrence Relation

Instead of recursively solving 2 problems, solve g
problems

Size of problems is still n/2

Combining solutions is still O(n)

Example: q=3:
n/2

n/2

What is the recurrence relation?

March 8, 2019 CSCI211 - Sprenkle 18

3/8/19

Another Recurrence Relation

Instead of recursively solving 2 problems, solve g
problems

Size of problems is still n/2
Combining solutions is still O(n)
Recurrence relation:

For some constant ¢,
T(n) < g T(n/2) + cn whenn > 2
T(2)<c

Intuition about running time?

March 8, 2019 CSCI211 - Sprenkle 19

Unrolling Recurrence, q > 2

March 8, 2019 CSCI211 - Sprenkle 20

3/8/19

Unrolling Recurrence, g > 2

First level: an

g T(n/2)+cn A
T(n12) obe T(n2)
March 8, 2019 CSCI211 - Sprenkle

21

Unrolling Recurrence, q > 2

Next level: an

q T(n/4) + ¢(n/2) /\

oqoo cn/2

A/cn/z\‘/\

T(n/4) N T(n/4) eee T(n/4) 4

March 8, 2019 CSCI211 - Sprenkle

T(n/4)

22

3/8/19

Unrolling Recurrence, g > 2

How much does each level

cost, in terms of the level? o 0

Number of levels?

What is the total run time? cn/2 J

O\

— T~

P cn/2

7~

T4 3, T(n/A4) T(n/4) 4, T(n4)
q“ problems at level k
Size: n/2k
Number of levels: log;n
Each level takes g« * ¢ * (n/2¥) = (q/2)/ cn
—> Total work per level is increasing as level increases
March 8, 2019 CSCI211 - Sprenkle 23
Unrolling Recurrence, q > 2
How much does each level
cost, in terms of the level? a0
Number of levels? /\
What is the total run time!? A/cnIZ\‘ Joe cn2 |
T4 3, T(n/4) T(v4) 3,, T4

T(n) = Zj=0,|ogn (c|/2)j cn

Geometric series:
(constant ratio between successive terms)
Multiplying previous term by (q/2)

March 8, 2019 CSCI211 - Sprenkle

) O(n '°829)

24

3/8/19

Unrolling the Recurrence

Generalize: What are the steps?

March 8, 2019 CSCI211 - Sprenkle 25

Summary

Use recurrences to analyze the runtime of divide
and conquer algorithms
Need to figure out

Number of sub problems

Size of sub problems

Number of times divided (number of levels)

Cost of merging problems

March 8, 2019 CSCI211 - Sprenkle 26

3/8/19

Know Your Recurrence Relations

What algorithm has this recurrence relation?
What is that algorithm’s running time?

Recurrence Algorithm Running Time

T(n) =T(n/2) + O(1)
T(n) =T(n-1) + O(1)
T(n) =2 T(n/2) + O(1)
T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

March 8, 2019 CSCI211 - Sprenkle 27

Looking Ahead

Problem Set 7 — due next Friday
Wiki— 4.8, 5-5.3

March 8, 2019 CSCI211 - Sprenkle 28

3/8/19

