
3/8/19

1

Objectives
• Divide and conquer algorithms

ØRecurrence relations
ØCounting inversions

March 8, 2019 1CSCI211 - Sprenkle

Review
• What approach are we learning to solve

problems (as of Wednesday)?
• What is the recurrence relation for merge sort?

ØWhat is a recurrence relation in general?

March 8, 2019 CSCI211 - Sprenkle 2

3/8/19

2

Merge Sort’s Recurrence Relation

• T(n) = number of comparisons to mergesort an
input of size n

• Goal: put an upperbound on T(n):

March 8, 2019 CSCI211 - Sprenkle 3

For some constant c,
T(n) ≤ 2 T(n/2) + cn when n > 2,
T(2) ≤ c

O(n)

Solve T(n) to come up with explicit bound

basecase

Approaches to Solving Recurrences
• Unroll recursion

Ø Look for patterns in runtime at each level
Ø Sum up running times over all levels

• Substitute guess solution into recurrence
ØCheck that it works
Ø Induction on n

March 8, 2019 CSCI211 - Sprenkle 4

3/8/19

3

Unrolling Recurrence: T(n)

March 8, 2019 CSCI211 - Sprenkle 5

T(n) = 2 T(n/2) + cn

Unrolling Recurrence: 2 T(n/2) + cn
• First level: 2 T(n/2) + cn

March 8, 2019 CSCI211 - Sprenkle 6

cn

T(n/2)T(n/2)

How does the next level break down?

3/8/19

4

Unrolling Recurrence: 2 T(n/2) + cn

• Next level:

Each one is 2 T(n/4) + c(n/2)

March 8, 2019 CSCI211 - Sprenkle 7

cn

c n/2c n/2

T(n/4) T(n/4) T(n/4) T(n/4)

Next level?

Unrolling Recurrence

• Next level:
Each one is 2 T(n/8) + c(n/4)

March 8, 2019 CSCI211 - Sprenkle 8

cn

c n/2c n/2

c n/4 c n/4 c n/4 c n/4

And so on…

T(n/8) T(n/8)
… T(n/8) T(n/8)

What does the final level look like?

3/8/19

5

Unrolling Recurrence

• How much does each level cost, in terms of the level?
• How many levels are there (assuming n is a power of 2)?

• What is the total run time?

March 8, 2019 CSCI211 - Sprenkle 9

cn

c n/2c n/2

c n/4c n/4c n/4 c n/4

c c c c c c c c

T(n / 2k)

T(n)

T(2)

0

1

2

Unrolling Recurrence

• How many levels are there (assuming n is a power of 2)?

• How much does each level cost, in terms of the level?

• What is the total run time?

March 8, 2019 CSCI211 - Sprenkle 10

cn

c n/2c n/2

c n/4c n/4c n/4 c n/4

c c c c c c c c

T(n / 2k)

T(n)

T(2)

0

1

2

2k problems
Size: n/2k

Each level takes
2k * c * (n/2k) = cn

Number of levels: log2n

O(n log n)

3/8/19

6

Alternative: Proof by Induction

• Claim. If T(n) satisfies the recurrence

T(n) ≤ 2 T(n/2) + cn, then T(n) ≤ cn log2 n.

• Pf. (by induction on n)

ØBase case: n = 2

Ø Inductive hypothesis: T(n) ≤ cn log2 n

ØGoal: show that T(2n) ≤ 2cn log2 (2n)

March 8, 2019 CSCI211 - Sprenkle 11

Why doubling n?

Proof by Induction
• Claim. If T(n) satisfies the recurrence

T(n) ≤ 2 T(n/2) + cn, then T(n) ≤ cn log2 n.
• Pf. (by induction on n)

Ø Inductive hypothesis: T(n) ≤ cn log2 n
ØGoal: show that T(2n) ≤ 2cn log2 (2n)

March 8, 2019 CSCI211 - Sprenkle 12

T(2n) ≤ 2T(n) + c2n
≤ 2cn log2n + 2cn
≤ 2cn (log2(2n)-1) + 2cn
≤ 2cn log2(2n) - 2cn + 2cn
≤ 2cn log2(2n) ✔

• Replace T(n) w/ induction hypothesis
• Recurrence relation

• Log rules: what is the
difference between
log2(2n) and log2(n)?

3/8/19

7

Another Recurrence Relation:
Binary Search

• How does binary search work?
• What is its recurrence relation?

March 8, 2019 CSCI211 - Sprenkle 13

Analyzing Binary Search

March 8, 2019 CSCI211 - Sprenkle 14

BinarySearch(L[1…n], key):
if len(L) == 1 and L[1] == key:

return 1 #return the index
else:

return NOT_FOUND
mid = n/2
if L[mid] == key:

return mid #return the index
if L[mid] < key:

return BinarySearch(L[mid+1:], key)
else:

return BinarySearch(L[:mid], key)

What is the recurrence relation?

3/8/19

8

Analyzing Binary Search

March 8, 2019 CSCI211 - Sprenkle 15

BinarySearch(L[1…n], key):
if len(L) == 1 and L[1] == key:

return 1 #return the index
else:

return NOT_FOUND
mid = n/2
if L[mid] == key:

return mid #return the index
if L[mid] < key:

return BinarySearch(L[mid+1:], key)
else:

return BinarySearch(L[:mid], key)
What is the recurrence relation?

T(n) = T(n/2) + c

Unroll the Recurrence
• T(n) = T(n/2) + c

• Which makes the runtime?

March 8, 2019 CSCI211 - Sprenkle 16

3/8/19

9

Unroll the Recurrence
• T(n) = T(n/2) + c

ØConstant work at each level
ØNumber of levels: log n

• Which makes the runtime? O(log n)

March 8, 2019 CSCI211 - Sprenkle 17

Another Recurrence Relation

• Instead of recursively solving 2 problems, solve q
problems

Ø Size of problems is still n/2

• Combining solutions is still O(n)

March 8, 2019 CSCI211 - Sprenkle 18

What is the recurrence relation?

n

n/2 n/2
n/2

Example: q=3:

3/8/19

10

Another Recurrence Relation

• Instead of recursively solving 2 problems, solve q
problems

Ø Size of problems is still n/2

• Combining solutions is still O(n)

• Recurrence relation:

Ø For some constant c,

T(n) ≤ q T(n/2) + cn when n > 2

T(2) ≤ c

March 8, 2019 CSCI211 - Sprenkle 19

Intuition about running time?

Unrolling Recurrence, q > 2

March 8, 2019 CSCI211 - Sprenkle 20

T(n) ≤ q T(n/2) + cn

3/8/19

11

Unrolling Recurrence, q > 2
• First level:

q T(n/2) + cn

March 8, 2019 CSCI211 - Sprenkle 21

cn

T(n/2)T(n/2) …q

Unrolling Recurrence, q > 2

• Next level:
q T(n/4) + c(n/2)

March 8, 2019 CSCI211 - Sprenkle 22

cn

c n/2c n/2 …q

T(n/4) T(n/4) T(n/4) T(n/4)…q …q …

3/8/19

12

How much does each level
cost, in terms of the level?

Number of levels?

What is the total run time?

Unrolling Recurrence, q > 2

March 8, 2019 CSCI211 - Sprenkle 23

cn

c n/2c n/2 …q

T(n/4) T(n/4) T(n/4) T(n/4)…q …q

qk problems at level k
Size: n/2k

Each level takes qk * c * (n/2k) = (q/2)j cn
àTotal work per level is increasing as level increases

Number of levels: log2n

0

1

How much does each level
cost, in terms of the level?

Number of levels?

What is the total run time?

Unrolling Recurrence, q > 2

March 8, 2019 CSCI211 - Sprenkle 24

cn

c n/2c n/2 …q

T(n/4) T(n/4) T(n/4) T(n/4)…q …q

0

1

T(n) ≤ Σj=0,logn (q/2)j cn

Geometric series:
(constant ratio between successive terms)
Multiplying previous term by (q/2) O(n log2 q)

3/8/19

13

Unrolling the Recurrence
• Generalize: What are the steps?

March 8, 2019 CSCI211 - Sprenkle 25

Summary
• Use recurrences to analyze the runtime of divide

and conquer algorithms
• Need to figure out

ØNumber of sub problems
Ø Size of sub problems
ØNumber of times divided (number of levels)
ØCost of merging problems

March 8, 2019 CSCI211 - Sprenkle 26

3/8/19

14

Know Your Recurrence Relations

Recurrence Algorithm Running Time

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)
March 8, 2019 CSCI211 - Sprenkle 27

What algorithm has this recurrence relation?
What is that algorithm’s running time?

Looking Ahead
• Problem Set 7 – due next Friday
• Wiki – 4.8, 5-5.3

March 8, 2019 CSCI211 - Sprenkle 28

