Objectives

- Divide and conquer algorithms
$>$ Recurrence relations
$>$ Counting inversions

Review

- What approach are we learning to solve problems (as of Wednesday)?
- What is the recurrence relation for merge sort?
$>$ What is a recurrence relation in general?

Merge Sort's Recurrence Relation

- $T(n)=$ number of comparisons to mergesort an input of size n
- Goal: put an upperbound on $T(n)$:

Solve $T(n)$ to come up with explicit bound

Approaches to Solving Recurrences

- Unroll recursion
$>$ Look for patterns in runtime at each level
$>$ Sum up running times over all levels
- Substitute guess solution into recurrence
$>$ Check that it works
> Induction on n

Unrolling Recurrence: T(n)

$T(n)=2 T(n / 2)+c n$

Unrolling Recurrence: 2 T(n/2) + cn

- First level: $2 \mathrm{~T}(\mathrm{n} / 2)+c n$

How does the next level break down?

Unrolling Recurrence: $2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$

- Next level:

Each one is $2 T(n / 4)+c(n / 2)$

Next level?

Unrolling Recurrence

- Next level:

Each one is $2 T(n / 8)+c(n / 4)$

And so on...

What does the final level look like?

Unrolling Recurrence

- How much does each level cost, in terms of the level?
- How many levels are there (assuming n is a power of 2)?
- What is the total run time?

Unrolling Recurrence

- How many levels are there (assuming n is a power of 2)?
- How much does each level cost, in terms of the level?
- What is the total run time?

Alternative: Proof by Induction

- Claim. If $T(n)$ satisfies the recurrence $T(n) \leq 2 T(n / 2)+c n$, then $T(n) \leq c n \log _{2} n$.
- Pf. (by induction on n)
> Base case: $\mathrm{n}=2$
$>$ Inductive hypothesis: $T(n) \leq c n \log _{2} n$
$>$ Goal: show that $\mathrm{T}(2 \mathrm{n}) \leq 2 \mathrm{cn} \log _{2}(2 n)$

Why doubling n ?

Proof by Induction

- Claim. If $T(n)$ satisfies the recurrence $T(n) \leq 2 T(n / 2)+c n$, then $T(n) \leq c n \log _{2} n$.
- Pf. (by induction on n)
$>$ Inductive hypothesis: $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn} \log _{2} \mathrm{n}$
$>$ Goal: show that $\mathrm{T}(2 \mathrm{n}) \leq 2 \mathrm{cn} \log _{2}(2 \mathrm{n})$

$$
\begin{aligned}
& \mathrm{T}(2 \mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n})+\mathrm{c} 2 \mathrm{n} \quad-\text { Recurrence relation } \\
& \leq 2 \mathrm{cn} \log _{2} n+2 \mathrm{cn} \cdot \text { Replace } T(n) w / \text { induction hypothesis } \\
& \leq 2 \mathrm{cn}\left(\log _{2}(2 n)-\mathrm{I}\right)+2 \mathrm{cn} \quad \text { - Log rules: what is the } \\
& \leq 2 \mathrm{cn} \log _{2}(2 n)-2 \mathrm{cn}+2 \mathrm{cn} \quad \text { difference between } \\
& \leq 2 \mathrm{cn} \log _{2}(2 n) \sqrt{ } \quad \log _{2}(2 n) \text { and } \log _{2}(n) \text { ? }
\end{aligned}
$$

Another Recurrence Relation: Binary Search

- How does binary search work?
- What is its recurrence relation?

Analyzing Binary Search

BinarySearch(L[1...n], key): if $\operatorname{len}(L)==1$ and $L[1]==$ key: return 1 \#return the index else:
return NOT_FOUND $m i d=n / 2$ if L[mid] == key:
return mid \#return the index if L[mid] < key:
return BinarySearch(L[mid+1:], key) else:
return BinarySearch(L[:mid], key)
What is the recurrence relation?

Analyzing Binary Search

BinarySearch(L[1...n], key):
if $\operatorname{len}(\mathrm{L})==1$ and $\mathrm{L}[1]==$ key:
return 1 \#return the index
else:
return NOT_FOUND
$\operatorname{mid}=n / 2$
if $L[m i d]==$ key:
return mid \#return the index
if L[mid] < key:
return BinarySearch(L[mid+1:], key) else: return BinarySearch(L[:mid], key)
What is the recurrence relation?

$$
T(n)=T(n / 2)+c
$$

Unroll the Recurrence

- $T(n)=T(n / 2)+c$
- Which makes the runtime?

Unroll the Recurrence

- $T(n)=T(n / 2)+c$
$>$ Constant work at each level
$>$ Number of levels: log n
- Which makes the runtime? O(log n)

Another Recurrence Relation

- Instead of recursively solving 2 problems, solve \boldsymbol{q} problems
$>$ Size of problems is still $n / 2$
- Combining solutions is still $\mathrm{O}(\mathrm{n})$

What is the recurrence relation?

Another Recurrence Relation

- Instead of recursively solving 2 problems, solve q problems
> Size of problems is still $n / 2$
- Combining solutions is still O(n)
- Recurrence relation:
$>$ For some constant c,
$\mathrm{T}(\mathrm{n}) \leq q \mathrm{~T}(\mathrm{n} / 2)+c n$ when $\mathrm{n}>2$
$T(2) \leq c$
Intuition about running time?

Unrolling Recurrence, q > 2

$T(n) \leq q T(n / 2)+c n$

Unrolling Recurrence, $q>2$

- First level:
$q \mathrm{~T}(\mathrm{n} / 2)+c n$

Unrolling Recurrence, q > 2

- Next level:
$q T(n / 4)+c(n / 2)$

Unrolling Recurrence, q > 2

q^{k} problems at level k
Size: $n / 2^{k}$
Number of levels: $\log _{2} n$
Each level takes $q^{k} * c *\left(n / 2^{k}\right)=(q / 2)^{j} c n$
\rightarrow Total work per level is increasing as level increases

Unrolling Recurrence, q > 2

$T(n) \leq \Sigma_{j=0, \operatorname{logn}}(q / 2)^{i} c n$
Geometric series:
(constant ratio between successive terms)
Multiplying previous term by (q/2)

$$
O\left(n^{\log 2 q}\right)
$$

Unrolling the Recurrence

- Generalize: What are the steps?

Summary

- Use recurrences to analyze the runtime of divide and conquer algorithms
- Need to figure out
$>$ Number of sub problems
$>$ Size of sub problems
$>$ Number of times divided (number of levels)
> Cost of merging problems

Know Your Recurrence Relations

What algorithm has this recurrence relation? What is that algorithm's running time?

Recurrence
Algorithm
Running Time

$$
\begin{aligned}
& T(n)=T(n / 2)+O(1) \\
& T(n)=T(n-1)+O(1) \\
& T(n)=2 T(n / 2)+O(1) \\
& T(n)=T(n-1)+O(n) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

Looking Ahead

- Problem Set 7 - due next Friday
- Wiki - 4.8, 5-5.3

