Objectives

- Wrap up Counting inversions
- Divide and conquer
$>$ Closest pair of points
$>$ Integer multiplication
$>$ Matrix multiplication

Counting Inversions: Implementation

```
Sort-and-Count(L)
```

$$
\text { if list } \mathrm{L} \text { has one element }
$$ return 0 and the list L

Divide the list into two halves A and B
(i_{A}, A) $=$ Sort-and-Count (A)
(iB, B) $=$ Sort-and-Count (B)
(i, L) $=$ Merge-and-Count (A, B)
total_inversions $=i_{A}+i_{B}+i$
return total_inversions and the sorted list L

- Merge-and-Count
$>$ Pre-condition. A and B are sorted.
$>$ Post-condition. L is sorted.

Counting Inversions: Implementation

```
Sort-and-Count(L)
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    (iA,A) = Sort-and-Count(A)
    (i, B, B) = Sort-and-Count(B)
    (i, L) = Merge-and-Count(A, B)
    Recurrence relation?
    Runtime of algorithm?
    total_inversions = i_ coin
    return total_inversions and the sorted list L
Merge-and-Count
\(>\) Pre-condition. A and B are sorted.
\(>\) Post-condition. L is sorted.
```


Analysis

Recurrence Relation:

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+O(n) \\
& \Rightarrow T(n) \in O(n \log n)
\end{aligned}
$$

```
Sort-and-Count(L)
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    (iA, A) = Sort-and-Count(A) T(n/2)
    (i, B, B) = Sort-and-Count(B) T(n/2)
    (i, L) = Merge-and-Count(A, B) O(n)
    total_inversions = im + i
    return total_inversions and the sorted list L
```


CLOSEST PAIR OF POINTS

Computational Geometry

- Algorithms and data structures for geometrical objects
$>$ Points, line segments, polygons, etc.
$>$ Common motivator: large data sets \rightarrow efficiency
- Some Applications
$>$ Graphics
$>$ Robotics
- motion planning and visibility problems
$>$ Geographic information systems (GIS)
${ }^{\bullet}$ geometrical location and search, route planning

Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Special case of nearest neighbor, Euclidean MST, Voronoi.

- Brute force?

Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
> Special case of nearest neighbor, Euclidean MST, Voronoi.
- Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons

Simplify: All Points on a Line

- How could we solve this problem?
- What is its running time?

Simplify: All Points on a Line

- How could we solve this problem?
$>$ Sort the points
- Monotonically increasing x/y coordinates
- No closer points than neighbors in sorted list
$>$ Step through, looking at the distances between each pair
- What is its running time?
$>\mathrm{O}(\mathrm{n} \operatorname{logn})$
Why won't this work for 2D?

Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
$>$ Special case of nearest neighbor, Euclidean MST, Voronoi.
- Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons
- 1-D version. $O(n \log n$)

Easy if points are on a line

- Assumption. No two points have same x coordinate to make presentation cleaner

Closest Pair of Points: First Attempt

- Divide. Sub-divide region into 4 quadrants

Why does this seem to be a natural first step?
Any problems with implementing this approach?

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants

- Obstacle. Impossible to ensure $n / 4$ points in each piece

Closest Pair of Points

Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side

How do we implement this?

Closest Pair of Points

Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side

- Conquer: find closest pair in each side recursively

Closest Pair of Points

- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side
- Conquer: find closest pair in each side recursively
- Combine: find closest pair with one point in each side seems like $\Theta\left(n^{2}\right)$
- Return best of 3 solutions

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$
where $\delta=\min ($ left_min_dist, right_min_dist)

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.
$>$ Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair w/ 1 point in each side, assuming that distance < δ.
$>$ Observation: only consider points within δ of line L
$>$ Sort points in 2δ-strip by their y coordinate

Closest Pair of Points

- Find closest pair w/ 1 point in each side, assuming that distance $<\delta$
$>$ Observation: only consider points within δ of line L
$>$ Sort points in 2δ-strip by their y coordinate
- Only checks distances of those within 11 positions in sorted list!

Analyzing Cost of Combining

Prepare minds to be blown...

- Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y coordinate
Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ
$>$ What is the distance of the box?
$>$ How many points can be in a box?
$>$ When do we know that points are $>\delta$ apart?

Analyzing Cost of Combining

- Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y -coordinate
- Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ
- Pf.
$>$ No two points lie in same $1 / 2 \delta$-by- $1 / 2 \delta$ box
$>$ Two points at least 2 rows apart have distance $\geq 2(1 / 2 \delta)$.
- Fact. Still true if we replace 12 with 7.

Cost of combining is therefore...?
March 13, 2019

Closest Pair Algorithm

Closest-Pair (p_{1}, \ldots, p_{n})

if $n<=3$:
return distance of closest pair by brute force
Compute separation line L such that half the points are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair(right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.
Scan points in y-order and compare distance between each point and next 7 neighbors. If any of these distances is less than δ, update δ.
return δ

Closest Pair Algorithm

Closest-Pair (p_{1}, \ldots, p_{n})
if $n<=3$:
return distance of closest pair by brute force
Compute separation line L such that half the points $O(n \log n)$ are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair(right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation $O(n)$
line L
Sort remaining points by y-coordinate.
Scan points in y-order and compare distance between $O(n)$ each point and next 7 neighbors. If any of these distances is less than δ, update δ.

Putting the recurrence relation together...
return δ
$T(n)=2 T(n / 2)+O(n \log n)$

Closest Pair of Points: Analysis

- Running time. Solved in 5.2

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Can we achieve $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

- Yes. Don't sort points in strip from scratch each time.
$>$ Each recursive call returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate
$>$ Sort by merging two pre-sorted lists

INTEGER AND MATRIX MULTIPLICATION

Integer Arithmetic

- Add. Given 2 n-digit integers a and b, compute a + b.

Algorithm?
$>$ Runtime?

Integer Arithmetic

- Add. Given 2 n-digit integers a and b, compute a + b.
$>$ Algorithm?
$>$ Runtime?

$O(n)$ operations

Integer Arithmetic

Multiply. Given $2 n$-digit integers a and b, compute $\mathrm{a} \times \mathrm{b}$.
$>$ Algorithm?
$>$ Runtime?

$$
\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
* & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
& & & & & & & a \times b
\end{array}
$$

Integer Arithmetic

- Multiply. Given $2 n$-digit integers a and b, compute $\mathrm{a} \times \mathrm{b}$.
$>$ Brute force solution: $\Theta\left(\mathrm{n}^{2}\right)$ bit operations

Divide-and-Conquer Multiplication: Warmup

- To multiply 2 n -digit integers:
$>$ Multiply $41 ⁄ 2 n$-digit integers
$>$ Add $2 ½ n$-digit integers and shift to obtain result

What is the recurrence relation?

- How many subproblems?
- What is merge cost?
- What is its runtime?

Divide-and-Conquer Multiplication: Warmup

- To multiply 2 n-digit integers:

Multiply $41 / 2 n$-digit integers
$>$ Add $21 / 2 n$-digit integers and shift to obtain result

Karatsuba Multiplication

- To multiply two n-digit integers:
$>$ Add $21 / 2 n$ digit integers
$>$ Multiply $31 / 2 n$-digit integers
$>$ Add, subtract, and shift

$1 / 2 n$-digit integers to obtain result

```
x=2 2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y=2 2n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = 2n}\cdot\mp@subsup{x}{1}{\prime}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
=2n}\mp@subsup{2}{}{n}\cdot\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot((\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{})(\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{})-\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}-\mp@subsup{x}{0}{}\mp@subsup{y}{0}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
```

What is the recurrence relation? Runtime?

Karatsuba Multiplication

- Theorem. [Karatsuba-Ofman, 1962]

Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations

```
x = 2 n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y = 2 n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = 2 'r}\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
    = 2
```

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Looking Ahead

- PS7 due Friday
- Exam 2 handed out Friday
- Moving to Dynamic Programming on Friday!

