
3/13/19

1

Objectives
• Wrap up Counting inversions
• Divide and conquer

ØClosest pair of points
Ø Integer multiplication
ØMatrix multiplication

March 13, 2019 1CSCI211 - Sprenkle

Counting Inversions: Implementation

• Merge-and-Count
ØPre-condition. A and B are sorted.
ØPost-condition. L is sorted.

March 13, 2019 CSCI211 - Sprenkle 2

Sort-and-Count(L)
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(iA, A) = Sort-and-Count(A)
(iB, B) = Sort-and-Count(B)
(i, L) = Merge-and-Count(A, B)

total_inversions = iA + iB + i
return total_inversions and the sorted list L

Get out handouts

3/13/19

2

Counting Inversions: Implementation

• Merge-and-Count
ØPre-condition. A and B are sorted.
ØPost-condition. L is sorted.

March 13, 2019 CSCI211 - Sprenkle 3

Sort-and-Count(L)
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(iA, A) = Sort-and-Count(A)
(iB, B) = Sort-and-Count(B)
(i, L) = Merge-and-Count(A, B)

total_inversions = iA + iB + i
return total_inversions and the sorted list L

Recurrence relation?
Runtime of algorithm?

Analysis
Recurrence Relation:

T(n) ≤ 2T(n/2) + O(n)
èT(n) ∈ O(n log n)

March 13, 2019 CSCI211 - Sprenkle 4

Sort-and-Count(L)
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(iA, A) = Sort-and-Count(A)
(iB, B) = Sort-and-Count(B)
(i, L) = Merge-and-Count(A, B)

total_inversions = iA + iB + i
return total_inversions and the sorted list L

T(n/2)
T(n/2)

O(n)

3/13/19

3

CLOSEST PAIR OF POINTS

March 13, 2019 CSCI211 - Sprenkle 5

Computational Geometry
• Algorithms and data structures for geometrical

objects
ØPoints, line segments, polygons, etc.
ØCommon motivator: large data sets à efficiency

• Some Applications
ØGraphics
ØRobotics

• motion planning and visibility problems
ØGeographic information systems (GIS)

• geometrical location and search, route planning
March 13, 2019 CSCI211 - Sprenkle 6

3/13/19

4

Closest Pair of Points
• Closest pair. Given n points in the plane, find a

pair with smallest Euclidean distance between
them.
Ø Special case of nearest neighbor, Euclidean MST,

Voronoi.

• Brute force?

March 13, 2019 CSCI211 - Sprenkle 7

fast closest pair inspired
fast algorithms for these problems

Closest Pair of Points
• Closest pair. Given n points in the plane, find a

pair with smallest Euclidean distance between
them.
Ø Special case of nearest neighbor, Euclidean MST,

Voronoi.

• Brute force. Check all pairs of points p and q
with Q(n2) comparisons

March 13, 2019 CSCI211 - Sprenkle 8

3/13/19

5

Simplify: All Points on a Line
• How could we solve this problem?

• What is its running time?

March 13, 2019 CSCI211 - Sprenkle 9

Simplify: All Points on a Line
• How could we solve this problem?

Ø Sort the points
• Monotonically increasing x/y coordinates
• No closer points than neighbors in sorted list

Ø Step through, looking at the distances between each
pair

• What is its running time?
ØO(n logn)

March 13, 2019 CSCI211 - Sprenkle 10

Why won’t this work for 2D?

3/13/19

6

Closest Pair of Points

• Closest pair. Given n points in the plane, find a
pair with smallest Euclidean distance between
them.

Ø Special case of nearest neighbor, Euclidean MST,
Voronoi.

• Brute force. Check all pairs of points p and q
with Q(n2) comparisons

• 1-D version. O(n log n)

Ø Easy if points are on a line

• Assumption. No two points have same x
coordinate to make presentation cleaner

March 13, 2019 CSCI211 - Sprenkle 11

Closest Pair of Points: First Attempt
• Divide. Sub-divide region into 4 quadrants

March 13, 2019 CSCI211 - Sprenkle 12

L

Why does this seem to be a natural first step?
Any problems with implementing this approach?

3/13/19

7

Closest Pair of Points: First Attempt
• Divide. Sub-divide region into 4 quadrants
• Obstacle. Impossible to ensure n/4 points in

each piece

March 13, 2019 CSCI211 - Sprenkle 13

L

Closest Pair of Points
• Divide: draw vertical line L so that roughly ½n

points on each side

March 13, 2019 CSCI211 - Sprenkle 14

L

How do we implement this?

3/13/19

8

Closest Pair of Points
• Divide: draw vertical line L so that roughly ½n

points on each side
• Conquer: find closest pair in each side recursively

March 13, 2019 CSCI211 - Sprenkle 15

12

21

L

Closest Pair of Points
• Divide: draw vertical line L so that roughly ½n points on each side
• Conquer: find closest pair in each side recursively
• Combine: find closest pair with one point in each side
• Return best of 3 solutions

March 13, 2019 CSCI211 - Sprenkle 16

12

21
8

L

seems like Q(n2)

Do we need to check all pairs?

3/13/19

9

Closest Pair of Points
• Find closest pair with one point in each side,

assuming that distance < d
where d = min(left_min_dist, right_min_dist)

March 13, 2019 CSCI211 - Sprenkle 17

12

21

d = min(12, 21)

L

Closest Pair of Points
• Find closest pair with one point in each side,

assuming that distance < d.
ØObservation: only need to consider points within d of

line L.

March 13, 2019 CSCI211 - Sprenkle 18

12

21

d

L

d = min(12, 21)

3/13/19

10

Closest Pair of Points
• Find closest pair w/ 1 point in each side, assuming that

distance < d.
Ø Observation: only consider points within d of line L
Ø Sort points in 2d-strip by their y coordinate

March 13, 2019 CSCI211 - Sprenkle 19

12

21

1

2

3

4
5

6

7

d

L

d = min(12, 21)

How many points are
within that region?

Closest Pair of Points
• Find closest pair w/ 1 point in each side, assuming that distance < d

Ø Observation: only consider points within d of line L
Ø Sort points in 2d-strip by their y coordinate

• Only checks distances of those within 11 positions in sorted list!

March 13, 2019 CSCI211 - Sprenkle 20

12

21

1

2

3

4
5

6

7

d

L

d = min(12, 21)

3/13/19

11

Analyzing Cost of Combining

• Def. Let si be the point in the
2d-strip, with the ith smallest y-
coordinate

• Claim. If |i – j| ³ 12, then the
distance between si and sj is at
least d
ØWhat is the distance of the box?
ØHow many points can be in a box?
ØWhen do we know that points are

> d apart?
March 13, 2019 CSCI211 - Sprenkle 21d

27

29

30

31

28

26

25

d

½d

½d

½d

39

i

j

Prepare minds to be blown…

Analyzing Cost of Combining
• Def. Let si be the point in the 2d-strip,

with the ith smallest y-coordinate
• Claim. If |i – j| ³ 12, then the distance

between si and sj is at least d
• Pf.

Ø No two points lie in same ½d-by-½d box
Ø Two points at least 2 rows apart

have distance ³ 2(½d). ▪
• Fact. Still true if we replace 12 with 7.

March 13, 2019 CSCI211 - Sprenkle 22

Cost of combining is therefore…?

22d

27

29

30

31

28

26

25

d

½d

½d

½d

39

i

j

3/13/19

12

Closest Pair Algorithm

March 13, 2019 CSCI211 - Sprenkle 23

Closest-Pair(p1, …, pn)
if n <= 3:

return distance of closest pair by brute force

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation
line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these
distances is less than d, update d.

return d

Closest Pair Algorithm

March 13, 2019 CSCI211 - Sprenkle 24

Closest-Pair(p1, …, pn)
if n <= 3:

return distance of closest pair by brute force

Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation
line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these
distances is less than d, update d.

return d

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Putting the recurrence relation together…

T(n) = 2 T(n/2) + O(n log n)

3/13/19

13

Closest Pair of Points: Analysis
• Running time.

• Can we achieve O(n log n)?

• Yes. Don't sort points in strip from scratch each
time.
Ø Each recursive call returns two lists: all points sorted

by y coordinate, and all points sorted by x coordinate
Ø Sort by merging two pre-sorted lists

March 13, 2019 CSCI211 - Sprenkle 25

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

Solved in 5.2

INTEGER AND MATRIX
MULTIPLICATION

March 13, 2019 CSCI211 - Sprenkle 26

3/13/19

14

Integer Arithmetic
• Add. Given 2 n-digit integers a and b,

compute a + b.
ØAlgorithm?
ØRuntime?

March 13, 2019 CSCI211 - Sprenkle 27

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

a
b

a + b

Integer Arithmetic
• Add. Given 2 n-digit integers a and b,

compute a + b.
ØAlgorithm?
ØRuntime?

March 13, 2019 CSCI211 - Sprenkle 28

O(n) operations

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

a
b

a + b

3/13/19

15

Integer Arithmetic
• Multiply. Given 2 n-digit integers a and b,

compute a � b.
ØAlgorithm?
ØRuntime?

March 13, 2019 CSCI211 - Sprenkle 29

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0*

a
b

a × b

Integer Arithmetic
• Multiply. Given 2 n-digit integers a and b,

compute a � b.
ØBrute force solution: Q(n2) bit operations

March 13, 2019 CSCI211 - Sprenkle 30

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

0000000

100000000001011

1

0

1

1

1

1

1

0

*

Goal: Faster algorithm

3/13/19

16

Divide-and-Conquer Multiplication: Warmup

• To multiply 2 n-digit integers:
ØMultiply 4 ½n-digit integers
ØAdd 2 ½n-digit integers and shift to obtain result

March 13, 2019 CSCI211 - Sprenkle 31

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

What is the recurrence relation?
• How many subproblems?
• What is merge cost?
• What is its runtime?

Shift

A B C D

x=10001101
x1=1000 x0=1101

Divide-and-Conquer Multiplication: Warmup

• To multiply 2 n-digit integers:
ØMultiply 4 ½n-digit integers
ØAdd 2 ½n-digit integers and shift to obtain result

March 13, 2019 CSCI211 - Sprenkle 32

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

Shift

A B C D

€

T(n) = 4T n /2()
recursive calls

 + Θ(n)
add, shift
 ⇒ T(n) =Θ(n2)

assumes n is a power of 2

Not an improvement
over brute force

3/13/19

17

Karatsuba Multiplication
• To multiply two n-digit integers:

ØAdd 2 ½n digit integers
ØMultiply 3 ½n-digit integers
ØAdd, subtract, and shift

½n-digit integers to obtain result

March 13, 2019 CSCI211 - Sprenkle 33

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

A B CA C

What is the recurrence relation? Runtime?

Anatolii Alexeevich Karatsuba

Karatsuba Multiplication
• Theorem. [Karatsuba-Ofman, 1962]

Can multiply two n-digit integers in
O(n1.585) bit operations

March 13, 2019 CSCI211 - Sprenkle 34

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

+ Θ(n)

add, subtract, shift

⇒ T(n) = O(n log 2 3) = O(n1.585)

A B CA C

3/13/19

18

Looking Ahead
• PS7 due Friday
• Exam 2 handed out Friday
• Moving to Dynamic Programming on Friday!

March 13, 2019 CSCI211 - Sprenkle 35

