
3/20/19

1

Objectives

• Dynamic Programming

ØWrapping up: weighted interval schedule

Ø Segmented Least Squares

Mar 20, 2019 1CSCI211 - Sprenkle

Summary: Properties of Problems 
for Dynamic Programming
• Polynomial number of subproblems
• Solution to original problem can be easily 

computed from solutions to subproblems
• Natural ordering of subproblems, easy to 

compute recurrence

Mar 20, 2019 CSCI211 - Sprenkle 2

Get out handouts from last time…



3/20/19

2

Review: Weighted Interval Scheduling
• Job j starts at sj, finishes at fj, and has weight or value vj

• Two jobs are compatible if they don't overlap
• Goal: find maximum weight subset of mutually 

compatible jobs

Mar 20, 2019 CSCI211 - Sprenkle 3

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

What were our subproblems?
What choices did we make?

Weighted Interval Scheduling:
Memoization Analysis

Mar 20, 2019 CSCI211 - Sprenkle 4

Costs?

Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)



3/20/19

3

Weighted Interval Scheduling:
Memoization Analysis

Mar 20, 2019 CSCI211 - Sprenkle 5

Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)

O(n log n)

O(n)

O(n log n);

O(n)

Weighted Interval Scheduling: 

Running Time
• Claim.  Memoized version of algorithm takes O(n log n) time

Ø Sort by finish time:  O(n log n)

Ø Computing p(×) :  O(n log n)

Ø M-Compute-Opt(j):  each invocation takes O(1) time and 
either

• (i) returns an existing value M[j]
• (ii) fills in one new entry M[j] and makes two recursive calls

Ø Progress measure F = # nonempty entries of M[]
• (i) initially F = 0,  throughout F £ n

• (ii) increases F by 1  Þ at most 2n recursive calls

Ø Running time of M-Compute-Opt(n) is O(n).   ▪
• Remark.

Ø O(n) if jobs are pre-sorted by start and finish times – see textbook

Mar 20, 2019 CSCI211 - Sprenkle 6



3/20/19

4

Weighted Interval Scheduling: 
Finding a Solution

• Dynamic programming algorithms compute 
optimal value

• What if we want the solution itself?
ØNot simply the optimal value

• Do some post-processing
Ø Looking at M, how do we know which set of intervals 

were chosen?

Mar 20, 2019 CSCI211 - Sprenkle 7

M 0 A B C D E F G H
0 1 2 3 5 5 5 5 6

Towards Finding a Solution

Mar 20, 2019 CSCI211 - Sprenkle 8

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

p(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5 5 6



3/20/19

5

Weighted Interval Scheduling:
Finding a Solution

• Dynamic programming algorithms compute optimal 
value

• What if we want the solution itself
Ø (not simply the value)?

• Do some post-processing

Mar 20, 2019 CSCI211 - Sprenkle 9

M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
if j = 0:

output nothing
elif did I pick the job?:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Weighted Interval Scheduling:
Finding a Solution

• Dynamic programming algorithms compute optimal 
value

• What if we want the solution itself
Ø (not simply the value)?

• Do some post-processing

Mar 20, 2019 CSCI211 - Sprenkle 10

M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
if j = 0:

output nothing
elif vj + M[p(j)] > M[j-1]:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Runtime?

O(n)



3/20/19

6

Turning it Around…
• We solved as a recursive/memoized algorithm

Mar 20, 2019 CSCI211 - Sprenkle 11

Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)

Can we write this algorithm as an iterative solution?

Towards Iterative Solution…

Mar 20, 2019 CSCI211 - Sprenkle 12

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

p(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H



3/20/19

7

Iterative Solution
• Build up solution from subproblems instead of 

breaking down

• Typically, we’ll take iterative approach

Mar 20, 2019 CSCI211 - Sprenkle 13

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

Runtime?

O(n)

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 14

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

p(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0



3/20/19

8

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 15

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0

M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 16

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1

M[j] = max(vj + M[p(j)], M[j-1])



3/20/19

9

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 17

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1

M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 18

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2

M[j] = max(vj + M[p(j)], M[j-1])



3/20/19

10

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 19

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2 3

M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 20

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5

M[j] = max(vj + M[p(j)], M[j-1])



3/20/19

11

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 21

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5

And so on….

M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively

Mar 20, 2019 CSCI211 - Sprenkle 22

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)

0

0

0
A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5 5 6

M[j] = max(vj + M[p(j)], M[j-1])

Find the solution?



3/20/19

12

Putting It All Together

Mar 20, 2019 CSCI211 - Sprenkle 23

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

Find-Solution(n) def Find-Solution(j):
if j = 0:

output nothing
elif vj + M[p(j)] > M[j-1]:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Total Runtime: O(n logn)

Review: Solving 
Dynamic Programming Problems
1. Determine optimal substructure of problem

Ø Ask, what is the problem we’re solving?

Ø Define the recurrence relation

2. Define algorithm to find the value of optimal 
solution

3. Optionally, change algorithm to an iterative
rather than recursive solution

4. Define algorithm to find optimal solution
5. Analyze running time of algorithms

Mar 20, 2019 CSCI211 - Sprenkle 24



3/20/19

13

SEGMENTED LEAST SQUARES

Mar 20, 2019 CSCI211 - Sprenkle 25

Least Squares
• Foundational problem in statistics and numerical 

analysis
• Given n points in the plane: (x1, y1),

(x2, y2) , . . . , (xn, yn)
• Find a line y = ax + b that minimizes the sum of 

the squared error
Ø “line of best fit”

Mar 20, 2019 CSCI211 - Sprenkle 26

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

x

y

Sum of 
squared 
error



3/20/19

14

Least Squares
• Foundational problem in statistics and numerical analysis
• Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
• Find a line y = ax + b that minimizes the sum of the squared 

error
Ø “line of best fit”

• Closed form solution.  Calculus  Þ min error 
is achieved when

Mar 20, 2019 CSCI211 - Sprenkle 27

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Sum of
squared error

Least Squares
• What happens to the error if we try to fit one 

line to these points?

• What pattern does it seem like these points 
have?

Mar 20, 2019 CSCI211 - Sprenkle 28

x

y



3/20/19

15

Least Squares
• What happens to the error if we try to fit one 

line to these points?
Ø Large error

• Pattern: More like 3 lines
Mar 20, 2019 CSCI211 - Sprenkle 29

x

y

Segmented Least Squares

• Points lie roughly on a sequence of line segments

• Given n points in the plane (x1, y1), (x2, y2) , . . . , 
(xn, yn) with x1 < x2 < ... < xn, find a sequence of line 
segments that minimizes f(x)

Mar 20, 2019 CSCI211 - Sprenkle 30

x

y

If I want the best fit, how many lines should I use?



3/20/19

16

Segmented Least Squares
• Points lie roughly on a sequence of line segments
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that 
minimizes f(x)

Mar 20, 2019 CSCI211 - Sprenkle 31
x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to 
balance accuracy and parsimony?

Segmented Least Squares
• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that minimizes:
Ø E: sum of the sums of the squared errors in each segment
Ø L: the number of lines

• Tradeoff function:  E + c L, for some constant c > 0.

Mar 20, 2019 CSCI211 - Sprenkle 32
x

y

How should we define 
an optimal solution?



3/20/19

17

Recall: 
Properties of Problems for DP
• Polynomial number of subproblems
• Solution to original problem can be easily 

computed from solutions to subproblems
• Natural ordering of subproblems, easy to 

compute recurrence

Mar 20, 2019 CSCI211 - Sprenkle 33

We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

Segmented Least Squares
• What made it seem like the points were in 

3 lines?  What happened?

Mar 20, 2019 CSCI211 - Sprenkle 34

x

y



3/20/19

18

Segmented Least Squares
• What made it seem like the points were in 

3 lines?  What happened?

• Error increased
• Looking for change in linear approximation

ØWhere to partition points into line segments
Mar 20, 2019 CSCI211 - Sprenkle 35

x

y

Toward a Solution
• Consider just the first or last point

Mar 20, 2019 CSCI211 - Sprenkle 36

x

y

What do we know about those points?  
their segments?  cost of a segment?



3/20/19

19

Toward a Solution

• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment

• What is the remaining problem?

Mar 20, 2019 CSCI211 - Sprenkle 37

x

y

Toward a Solution
• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1

Mar 20, 2019 CSCI211 - Sprenkle 38

x

y

Next:  Formulate as a recurrence



3/20/19

20

Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j)  = minimum sum of squares for points 

pi, pi+1 , …, pj.

• How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

• Which option do we choose?

Mar 20, 2019 CSCI211 - Sprenkle 39

Looking Ahead
• Exam 2 due Friday

Mar 20, 2019 CSCI211 - Sprenkle 40


