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Objectives

• Dynamic Programming

ØWrapping up: weighted interval schedule

Ø Segmented Least Squares
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Summary: Properties of Problems 
for Dynamic Programming
• Polynomial number of subproblems
• Solution to original problem can be easily 

computed from solutions to subproblems
• Natural ordering of subproblems, easy to 

compute recurrence
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Get out handouts from last time…
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Review: Weighted Interval Scheduling
• Job j starts at sj, finishes at fj, and has weight or value vj

• Two jobs are compatible if they don't overlap
• Goal: find maximum weight subset of mutually 

compatible jobs
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What were our subproblems?
What choices did we make?

Weighted Interval Scheduling:
Memoization Analysis
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Costs?

Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)
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Weighted Interval Scheduling:
Memoization Analysis
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Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)

O(n log n)

O(n)

O(n log n);

O(n)

Weighted Interval Scheduling: 

Running Time
• Claim.  Memoized version of algorithm takes O(n log n) time

Ø Sort by finish time:  O(n log n)

Ø Computing p(×) :  O(n log n)

Ø M-Compute-Opt(j):  each invocation takes O(1) time and 
either

• (i) returns an existing value M[j]
• (ii) fills in one new entry M[j] and makes two recursive calls

Ø Progress measure F = # nonempty entries of M[]
• (i) initially F = 0,  throughout F £ n

• (ii) increases F by 1  Þ at most 2n recursive calls

Ø Running time of M-Compute-Opt(n) is O(n).   ▪
• Remark.

Ø O(n) if jobs are pre-sorted by start and finish times – see textbook
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Weighted Interval Scheduling: 
Finding a Solution

• Dynamic programming algorithms compute 
optimal value

• What if we want the solution itself?
ØNot simply the optimal value

• Do some post-processing
Ø Looking at M, how do we know which set of intervals 

were chosen?
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M 0 A B C D E F G H
0 1 2 3 5 5 5 5 6

Towards Finding a Solution
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Weighted Interval Scheduling:
Finding a Solution

• Dynamic programming algorithms compute optimal 
value

• What if we want the solution itself
Ø (not simply the value)?

• Do some post-processing

Mar 20, 2019 CSCI211 - Sprenkle 9

M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
if j = 0:

output nothing
elif did I pick the job?:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Weighted Interval Scheduling:
Finding a Solution

• Dynamic programming algorithms compute optimal 
value

• What if we want the solution itself
Ø (not simply the value)?

• Do some post-processing
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M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
if j = 0:

output nothing
elif vj + M[p(j)] > M[j-1]:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Runtime?

O(n)
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Turning it Around…
• We solved as a recursive/memoized algorithm
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Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 £ f2 £ ... £ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j):
if M[j] is empty:

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-Opt(n)

Can we write this algorithm as an iterative solution?

Towards Iterative Solution…
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Iterative Solution
• Build up solution from subproblems instead of 

breaking down

• Typically, we’ll take iterative approach
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

Runtime?

O(n)

Example: Iteratively
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Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])
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Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])



3/20/19

10

Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])
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Example: Iteratively
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And so on….

M[j] = max(vj + M[p(j)], M[j-1])

Example: Iteratively
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M[j] = max(vj + M[p(j)], M[j-1])

Find the solution?
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Putting It All Together
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

Find-Solution(n) def Find-Solution(j):
if j = 0:

output nothing
elif vj + M[p(j)] > M[j-1]:

print j
Find-Solution(p(j))

else:
Find-Solution(j-1)

Total Runtime: O(n logn)

Review: Solving 
Dynamic Programming Problems
1. Determine optimal substructure of problem

Ø Ask, what is the problem we’re solving?

Ø Define the recurrence relation

2. Define algorithm to find the value of optimal 
solution

3. Optionally, change algorithm to an iterative
rather than recursive solution

4. Define algorithm to find optimal solution
5. Analyze running time of algorithms
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SEGMENTED LEAST SQUARES
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Least Squares
• Foundational problem in statistics and numerical 

analysis
• Given n points in the plane: (x1, y1),

(x2, y2) , . . . , (xn, yn)
• Find a line y = ax + b that minimizes the sum of 

the squared error
Ø “line of best fit”
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€ 

SSE = (yi − axi −b)2
i=1

n
∑

x

y

Sum of 
squared 
error
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Least Squares
• Foundational problem in statistics and numerical analysis
• Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
• Find a line y = ax + b that minimizes the sum of the squared 

error
Ø “line of best fit”

• Closed form solution.  Calculus  Þ min error 
is achieved when
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€ 

SSE = (yi − axi −b)2
i=1

n
∑
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n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Sum of
squared error

Least Squares
• What happens to the error if we try to fit one 

line to these points?

• What pattern does it seem like these points 
have?
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x
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Least Squares
• What happens to the error if we try to fit one 

line to these points?
Ø Large error

• Pattern: More like 3 lines
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x

y

Segmented Least Squares

• Points lie roughly on a sequence of line segments

• Given n points in the plane (x1, y1), (x2, y2) , . . . , 
(xn, yn) with x1 < x2 < ... < xn, find a sequence of line 
segments that minimizes f(x)
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x

y

If I want the best fit, how many lines should I use?
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Segmented Least Squares
• Points lie roughly on a sequence of line segments
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that 
minimizes f(x)
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x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to 
balance accuracy and parsimony?

Segmented Least Squares
• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that minimizes:
Ø E: sum of the sums of the squared errors in each segment
Ø L: the number of lines

• Tradeoff function:  E + c L, for some constant c > 0.
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x

y

How should we define 
an optimal solution?
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Recall: 
Properties of Problems for DP
• Polynomial number of subproblems
• Solution to original problem can be easily 

computed from solutions to subproblems
• Natural ordering of subproblems, easy to 

compute recurrence
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We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

Segmented Least Squares
• What made it seem like the points were in 

3 lines?  What happened?
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x

y
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Segmented Least Squares
• What made it seem like the points were in 

3 lines?  What happened?

• Error increased
• Looking for change in linear approximation

ØWhere to partition points into line segments
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x

y

Toward a Solution
• Consider just the first or last point
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x

y

What do we know about those points?  
their segments?  cost of a segment?
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Toward a Solution

• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment

• What is the remaining problem?
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x

y

Toward a Solution
• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1
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x

y

Next:  Formulate as a recurrence
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Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j)  = minimum sum of squares for points 

pi, pi+1 , …, pj.

• How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

• Which option do we choose?

Mar 20, 2019 CSCI211 - Sprenkle 39

Looking Ahead
• Exam 2 due Friday
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