Objectives

- Dynamic Programming
$>$ Wrapping up: weighted interval schedule
> Segmented Least Squares

Summary: Properties of Problems for Dynamic Programming

- Polynomial number of subproblems
- Solution to original problem can be easily computed from solutions to subproblems
- Natural ordering of subproblems, easy to compute recurrence

Get out handouts from last time...

Review: Weighted Interval Scheduling

Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}

- Two jobs are compatible if they don't overlap
- Goal: find maximum weight subset of mutually compatible jobs

Weighted Interval Scheduling: Memoization Analysis

Costs?

Input: n jobs (associated start time s_{j}, finish time f_{j}, and value v_{j})

Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$ Compute $p(1), p(2), \ldots, p(n)$
for $j=1$ to n
$M[j]=$ empty
$M[0]=0$
M-Compute-Opt(j):
if M[j] is empty:
$M[j]=\max \left(v_{j}+M\right.$-Compute-Opt $(p(j)), M$-Compute-Opt(j-1))
return M[j]
M-Compute-Opt(n)

Weighted Interval Scheduling: Memoization Analysis

```
Input: n jobs (associated start time sj, finish time f}\mp@subsup{f}{j}{}\mathrm{ , and
value vj}\mp@subsup{v}{j}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}\quadO(n\operatorname{log}n
Compute p(1), p(2),..., p(n) O(n log n);
for j = 1 to n
    M[j] = empty O(n)
M[0] = 0
M-Compute-Opt(j):
    if M[j] is empty:
        M[j] = max(vi + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
M-Compute-Opt(n) O(n)

\section*{Weighted Interval Scheduling: Running Time}
- Claim. Memoized version of algorithm takes O(n log n) time
\(>\) Sort by finish time: O(n log n)
\(>\) Computing \(\mathrm{p}(\cdot): \mathrm{O}(\mathrm{n} \log \mathrm{n})\)
\(>\mathrm{M}\)-Compute-Opt( j\()\) : each invocation takes \(\mathrm{O}(1)\) time and either
- (i) returns an existing value M[j]
- (ii) fills in one new entry M[j] and makes two recursive calls
\(>\) Progress measure \(\Phi=\) \# nonempty entries of M[]
- (i) initially \(\Phi=0\), throughout \(\Phi \leq n\)
- (ii) increases \(\Phi\) by \(1 \Rightarrow\) at most \(2 n\) recursive calls
\(>\) Running time of M -Compute- 0 pt \((\mathrm{n})\) is \(\mathrm{O}(\mathrm{n})\). -
- Remark.
\(>\mathrm{O}(\mathrm{n})\) if jobs are pre-sorted by start and finish times - see textbook

\section*{Weighted Interval Scheduling:}

Finding a Solution
- Dynamic programming algorithms compute optimal value
- What if we want the solution itself?
\(>\) Not simply the optimal value
- Do some post-processing
> Looking at M , how do we know which set of intervals were chosen?

M
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & A & B & C & D & E & F & G & H \\
\hline 0 & 1 & 2 & 3 & 5 & 5 & 5 & 5 & 6 \\
\hline
\end{tabular}

\section*{Towards Finding a Solution}


\section*{Weighted Interval Scheduling:}

Finding a Solution
- Dynamic programming algorithms compute optimal value
- What if we want the solution itself
\(>\) (not simply the value)?
- Do some post-processing

M-Compute-Opt(n)
Find-Solution( \(n\) )
def Find-Solution(j): if \(\mathrm{j}=0\) : output nothing elif did I pick the job?: print \(j\) Find-Solution( \(p(j)\) ) else:

\section*{Weighted Interval Scheduling:} Finding a Solution
- Dynamic programming algorithms compute optimal value
- What if we want the solution itself
\(>\) (not simply the value)?
- Do some post-processing
```

M-Compute-Opt(n)
Find-Solution(n)
def Find-Solution(j):
if j = 0:
output nothing
elif vj + M[p(j)] > M[j-1]:
print j
Find-Solution(p(j))
else:

```

\section*{Turning it Around...}
- We solved as a recursive/memoized algorithm

\section*{Can we write this algorithm as an iterative solution?}
```

Input: n jobs (associated start time sj, finish time fj, and
value vj)
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{
Compute p(1), p(2), ..., p(n)
for j = 1 to n
M[j] = empty
M[0] = 0
M-Compute-Opt(j):
if M[j] is empty:
M[j] = max(v v + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
M-Compute-Opt(n)

```

\section*{Towards Iterative Solution...}

M
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline O & A & B & C & D & E & F & G & H \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{Iterative Solution}
- Build up solution from subproblems instead of breaking down
```

Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)

```


```

 M[j] = max (vj + M[p(j)],M[j-1]) O(n)
    ```
- Typically, we'll take iterative approach

\section*{Example: Iteratively}

\(\mathbf{M}\)\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{0}\) & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & & & & & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

P(j)


\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

P(j)

\(\mathbf{M}\)\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{0}\) & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & & & & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

P(j)


\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

M \begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{0}\) & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & & & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

P(j)

M \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{0}\) & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

M \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{0}\) & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively \\ \[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\] \\ P(j)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{M} & 0 & A & B & C & D & E & F & G & H \\
\hline & 0 & 1 & 2 & 3 & 5 & & & & \\
\hline
\end{tabular}

\section*{Example: Iteratively}
\[
M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)
\]

P(j)

\(\mathbf{M}\)\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & A & B & C & D & E & F & G & H \\
\hline \(\mathbf{0}\) & 1 & 2 & 3 & 5 & 5 & 5 & 5 & 6 \\
\hline
\end{tabular}

\section*{Putting It All Together}

Input: \(n, s_{1}, \ldots, s_{n}, f_{1}, \ldots, f_{n}, v_{1}, \ldots, v_{n}\)
Sort jobs by finish times so that \(f_{1} \leq f_{2} \leq \ldots \leq f_{n}\).
Compute \(\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{n})\)
\(M[0]=0\)
for \(j=1\) to \(n\)
\(M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right)\)
Find-Solution( \(n\) )

Total Runtime: O(n logn) print \(j\) Find-Solution(p(j)) else:

Find-Solution(j-1)

\section*{Review: Solving} Dynamic Programming Problems
1. Determine optimal substructure of problem
> Ask, what is the problem we're solving?
\(>\) Define the recurrence relation
2. Define algorithm to find the value of optimal solution
3. Optionally, change algorithm to an iterative rather than recursive solution
4. Define algorithm to find optimal solution
5. Analyze running time of algorithms

\section*{SEGMENTED LEAST SQUARES}

\section*{Least Squares}
- Foundational problem in statistics and numerical analysis
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\)
- Find a line \(y=a x+b\) that minimizes the sum of the squared error
\(>\) "line of best fit"
Sum of squared error



\section*{Least Squares}

Foundational problem in statistics and numerical analysis
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\)
- Find a line \(y=a x+b\) that minimizes the sum of the squared error
\(>\) "line of best fit"

Sum of
squared error
\(S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}\)

- Closed form solution. Calculus \(\Rightarrow\) min error is achieved when
\[
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\]

\section*{Least Squares}
- What happens to the error if we try to fit one line to these points?

- What pattern does it seem like these points have?

\section*{Least Squares}

What happens to the error if we try to fit one line to these points?
> Large error

- Pattern: More like 3 lines

\section*{Segmented Least Squares}
- Points lie roughly on a sequence of line segments
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\), \(\left(x_{n}, y_{n}\right)\) with \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of line segments that minimizes \(f(x)\)

If I want the best fit, how many lines should I use?


\section*{Segmented Least Squares}
- Points lie roughly on a sequence of line segments
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of line segments that minimizes \(f(x)\)

What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony?


\section*{Segmented Least Squares}
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
\(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of line segments that minimizes:
\(>E\) : sum of the sums of the squared errors in each segment
\(>L\) : the number of lines
- Tradeoff function: \(E+c L\), for some constant \(\mathrm{c}>0\).


\section*{Recall:}

\section*{Properties of Problems for DP}
- Polynomial number of subproblems
- Solution to original problem can be easily computed from solutions to subproblems
- Natural ordering of subproblems, easy to compute recurrence

We need to:
- Figure out how to break the problem into subproblems
- Figure out how to compute solution from subproblems
- Define the recurrence relation between the problems

\section*{Segmented Least Squares}
- What made it seem like the points were in 3 lines? What happened?


\section*{Segmented Least Squares}

What made it seem like the points were in 3 lines? What happened?

- Error increased
- Looking for change in linear approximation
\(>\) Where to partition points into line segments

\section*{Toward a Solution}
- Consider just the first or last point

> What do we know about those points? their segments? cost of a segment?


\section*{Toward a Solution}
- \(\mathrm{p}_{\mathrm{n}}\) can only belong to one segment
\(>\) Segment: \(\mathrm{p}_{\mathrm{i}}, \ldots, \mathrm{p}_{\mathrm{n}}\)
> Cost: c (cost for segment) + error of segment
- What is the remaining problem?


\section*{Toward a Solution}
- \(\mathrm{p}_{\mathrm{n}}\) can only belong to one segment
\(>\) Segment: \(\mathrm{p}_{\mathrm{i}}, \ldots, \mathrm{p}_{\mathrm{n}}\)
> Cost: c (cost for segment) + error of segment
- What is the remaining problem?
\(>\) Solve for \(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{i}-1}\)

Next: Formulate as a recurrence


\section*{Dynamic Programming: Multiway Choice}
- Notation.
\(\Rightarrow \operatorname{OPT}(\mathrm{j})=\) minimum cost for points \(\mathrm{p}_{1}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\).
\(>\mathbf{e}(\mathbf{i}, \mathbf{j})=\) minimum sum of squares for points \(p_{i}, p_{i+1}, \ldots, p_{j}\).
- How do we compute OPT(j)?
\(>\) Last problem: binary decision (include job or not)
> This time: multiway decision
- Which option do we choose?

\section*{Looking Ahead}
- Exam 2 due Friday```

