
3/22/19

1

Objectives
• Dynamic Programming

ØReview: Weighted Interval Scheduling
ØWrap up: Least Segmented Squares
ØKnapsack

Mar 22, 2019 1CSCI211 - Sprenkle

Review
• What is the new algorithm design technique

we’re learning?
ØWhat questions do we ask to solve the problems?
ØWhat is the process? What are the components of

the algorithm?
• What problems have we considered so far?

Mar 22, 2019 2CSCI211 - Sprenkle

3/22/19

2

Review Solving
Dynamic Programming Problems
1. Determine optimal substructure of problem

Ø Define the recurrence relation
2. Define algorithm to find the value of optimal

solution
3. Optionally, change algorithm to an iterative

rather than recursive solution
4. Define algorithm to find optimal solution
5. Analyze running time of algorithms

Mar 22, 2019 CSCI211 - Sprenkle 3

Map to weighted-interval scheduling

Review
• What is the segmented least squares problem?

Mar 22, 2019 CSCI211 - Sprenkle 4

3/22/19

3

Segmented Least Squares
• Points lie roughly on a sequence of line segments
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of line segments that
minimizes f(x)

Mar 22, 2019 CSCI211 - Sprenkle 5
x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to
balance accuracy and parsimony?

Segmented Least Squares
• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of line segments that minimizes:
Ø E: sum of the sums of the squared errors in each segment
Ø L: the number of lines

• Tradeoff function: E + c L, for some constant c > 0.

Mar 22, 2019 CSCI211 - Sprenkle 6
x

y

How should we define
an optimal solution?

3/22/19

4

Toward a Solution
• Consider just the first or last point

Mar 22, 2019 CSCI211 - Sprenkle 7

x

y

What do we know about those points?
their segments? cost of a segment?

Toward a Solution

• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment

• What is the remaining problem?

Mar 22, 2019 CSCI211 - Sprenkle 8

x

y

3/22/19

5

Toward a Solution
• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1

Mar 22, 2019 CSCI211 - Sprenkle 9

x

y

Next: Formulate as a recurrence

Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, p2 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.

• How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

• Which option do we choose?

Mar 22, 2019 CSCI211 - Sprenkle 10

3/22/19

6

Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, p2 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.
• To compute OPT(j):

Ø Last segment contains points pi, pi+1, … , pj for some i
ØCost = e(i, j) + c + OPT(i-1).

Mar 22, 2019 CSCI211 - Sprenkle 11

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

Segmented Least Squares:
Algorithm Analysis

Mar 22, 2019 CSCI211 - Sprenkle 12

can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pn , c

Segmented-Least-Squares():
M[0] = 0
e[0][0] = 0
for j = 1 to n

for i = 1 to j
e[i][j] = least square error for the

segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (e[i][j] + c + M[i-1])

return M[n]

Costs?

3/22/19

7

Segmented Least Squares:
Algorithm Analysis

• Bottleneck: computing e(i, j) for O(n2) pairs, O(n)
per pair using previous formula

Mar 22, 2019 CSCI211 - Sprenkle 13

can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pn , c

Segmented-Least-Squares():
M[0] = 0
e[0][0] = 0
for j = 1 to n

for i = 1 to j
e[i][j] = least square error for the

segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (e[i][j] + c + M[i-1])

return M[n]

O(n3)

can be improved to O(n2) by
pre-computing various statistics

O(n2)

How do we find the solution?

Post-Processing: Finding the Solution

Mar 22, 2019 CSCI211 - Sprenkle 14

FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)

Cost?

Call as: FindSegments(n)

3/22/19

8

Post-Processing: Finding the Solution

Mar 22, 2019 CSCI211 - Sprenkle 15

FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)

Cost? O(n2)

Call as: FindSegments(n)

KNAPSACK

Mar 22, 2019 CSCI211 - Sprenkle 16

3/22/19

9

Knapsack Problem

• Given n objects and a “knapsack”

• Item i weighs wi > 0 kilograms and

has value vi > 0

Ø Example: jobs require wi time

• Knapsack has capacity of W kilograms

Ø Example: W is time interval that resource is available

Mar 22, 2019 CSCI211 - Sprenkle 17

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11Goal: fill knapsack so as

to maximize total value

Greedy Solution Won’t Work
• Should try greedy solution first:

Ø Typically fast, straightforward algorithm
• Greedy idea: order by value/weight

Ø Issue: not infinite supply of items
ØCounterexample:

• Weight of knapsack: 20

Mar 22, 2019 CSCI211 - Sprenkle 18

Item A B C D
Value 35 90 60 90
Size 5 15 10 10
Ratio 7 6 6 9

Greedy: D, A = 125
Optimal: D, C = 150

3/22/19

10

Towards a Recurrence…
• What do we know about the knapsack with

respect to item i?

Mar 22, 2019 CSCI211 - Sprenkle 19

Towards a Recurrence…
• What do we know about the knapsack with

respect to item i?
Ø Either select item i or not
Ø If don’t select

• Pick optimum solution of remaining items
ØOtherwise

Mar 22, 2019 CSCI211 - Sprenkle 20

What happens?
How does problem change?
Formulate the recurrence

3/22/19

11

Dynamic Programming: False Start
• Def. OPT(i) = max profit subset of items 1, …, i

ØCase 1: OPT does not select item i
• OPT selects best of { 1, 2, …, i-1 }

ØCase 2: OPT selects item i
• Accepting item i does not immediately imply that we

will have to reject other items
Ø No known conflicts

• Without knowing what other items were selected
before i, we don't know if we have enough room for i

Mar 22, 2019 CSCI211 - Sprenkle 21

Need more sub-problems!

Dynamic Programming:
Adding a New Variable
• Def. OPT(i, w) = max profit subset of items 1, …, i

with weight limit w
ØCase 1: OPT does not select item i

• OPT selects best of { 1, 2, …, i-1 }
using weight limit w

ØCase 2: OPT selects item i
• new weight limit = w – wi

• OPT selects best of { 1, 2, …, i–1 }
using new weight limit, w – wi

Mar 22, 2019 CSCI211 - Sprenkle 22

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

3/22/19

12

Knapsack Problem: Bottom-Up

Mar 22, 2019 CSCI211 - Sprenkle 23

Input: W, N, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to N
for w = 0 to W

if wi > w :
M[i, w] = M[i-1, w]

else
M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }

return M[n, W]

Knapsack Problem: Bottom-Up
• Fill up an n-by-W array

Mar 22, 2019 CSCI211 - Sprenkle 24

Input: W, N, w1,…,wN, v1,…,vN

for w = 0 to W # base case: no items, so value is 0
M[0, w] = 0

for i = 1 to N # for all items
for w = 0 to W # for all possible weights

if wi > w : # item’s weight is more than available
M[i, w] = M[i-1, w]

else
M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }

return M[n, W]

3/22/19

13

Looking Ahead
• Wiki due Monday

ØChap 6: 6.1-6.4
• PS8 due Friday

Mar 22, 2019 CSCI211 - Sprenkle 25

