Objectives

- Dynamic Programming
> Review: Weighted Interval Scheduling
$>$ Wrap up: Least Segmented Squares
> Knapsack

Review

- What is the new algorithm design technique we're learning?
$>$ What questions do we ask to solve the problems?
$>$ What is the process? What are the components of the algorithm?
- What problems have we considered so far?

Review Solving
 Dynamic Programming Problems

1. Determine optimal substructure of problem
$>$ Define the recurrence relation
2. Define algorithm to find the value of optimal solution
3. Optionally, change algorithm to an iterative rather than recursive solution
4. Define algorithm to find optimal solution
5. Analyze running time of algorithms

Map to weighted-interval scheduling

Review

- What is the segmented least squares problem?

Segmented Least Squares

- Points lie roughly on a sequence of line segments
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of line segments that minimizes $f(x)$

What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
goodness of fit

Segmented Least Squares

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
$\mathrm{X}_{1}<\mathrm{X}_{2}<\ldots<\mathrm{X}_{\mathrm{n}}$, find a sequence of line segments that minimizes:
$>E$: sum of the sums of the squared errors in each segment
$>L$: the number of lines
- Tradeoff function: $E+c L$, for some constant $\mathrm{c}>0$.

How should we define an optimal solution?

Toward a Solution

- Consider just the first or last point

> What do we know about those points? their segments? cost of a segment?

Toward a Solution

- p_{n} can only belong to one segment
$>$ Segment: $\mathrm{p}_{\mathrm{i}}, \ldots, \mathrm{p}_{\mathrm{n}}$
$>$ Cost: c (cost for segment) + error of segment
- What is the remaining problem?

Toward a Solution

- p_{n} can only belong to one segment
\Rightarrow Segment: $\mathrm{p}_{\mathrm{i}}, \ldots, \mathrm{p}_{\mathrm{n}}$
$>$ Cost: c (cost for segment) + error of segment
- What is the remaining problem?
$>$ Solve for $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{i}-1}$

Next: Formulate as a recurrence

Dynamic Programming: Multiway Choice

- Notation.
$\Rightarrow \mathrm{OPT}(\mathrm{j})=$ minimum cost for points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{j}}$.
$>\mathbf{e}(\mathbf{i}, \mathbf{j})=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.
- How do we compute OPT(j)?
$>$ Last problem: binary decision (include job or not)
$>$ This time: multiway decision
- Which option do we choose?

Dynamic Programming: Multiway Choice

- Notation.
\Rightarrow OPT $(\mathrm{j})=$ minimum cost for points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{j}}$.
$>\mathbf{e}(\mathbf{i}, \mathbf{j})=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.
To compute OPT(j):
Last segment contains points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i
$>$ Cost $=\mathrm{e}(\mathrm{i}, \mathrm{j})+\mathrm{c}+\mathrm{OPT}(\mathrm{i}-1)$.
$O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}$

```
Segmented Least Squares:
Algorithm Analysis
    Costs?
    INPUT: \(n, p_{1}, \ldots, p_{n}, c\)
    Segmented-Least-Squares():
        \(\mathrm{M}[0]=0\)
        \(\mathrm{e}[0][0]=0\)
        for \(j=1\) to \(n\)
        for \(i=1\) to \(j\)
            \(e[i][j]=\) least square error for the
                        segment \(p_{i}, \ldots, p_{j}\)
    for \(j=1\) to \(n\)
        \(M[j]=\min _{1 \leq i \leq j}(e[i][j]+c+M[i-1])\)
    return \(M[n]\)
```

```
Segmented Least Squares:
Algorithm Analysis
How do we find the solution?
    INPUT: n, p
    Segmented-Least-Squares():
        M[0] = 0
        e[0][0] = 0
        for j = 1 to n
        for i = 1 to j
            e[i][j] = least square error for the
                        segment pi,..., pj
    for j=1 to n
O(n2})\quadM[j]=\mp@code{min}1\leqi\leqj(e[i][j]+c+M[i-1]
    return M[n]
Bottleneck: computing e(i, j) for O(n2) pairs, O(n)
per pair using previous formula

\section*{Post-Processing: Finding the Solution}
```

FindSegments(j):
if j = 0:
output nothing
else:
Find an i that minimizes }\mp@subsup{e}{i,j}{}+c+M[i-1
Output the segment {\mp@subsup{p}{i}{},···, p p}
FindSegments(i-1)

```

\section*{Cost?}

Call as: FindSegments( \(n\) )

\section*{Post-Processing: Finding the Solution}
```

FindSegments(j):
if $\mathrm{j}=0$:
output nothing
else:
Find an i that minimizes $e_{i, j}+c+M[i-1]$
Output the segment $\left\{p_{i}, \ldots, p_{j}\right\}$
FindSegments(i-1)

```
\[
\text { Cost? } O\left(n^{2}\right)
\]

Call as: FindSegments(n)

\section*{KNAPSACK}

\section*{Knapsack Problem}
- Given \(n\) objects and a "knapsack"
- Item \(i\) weighs \(w_{i}>0\) kilograms and has value \(v_{i}>0\)
\(>\) Example: jobs require \(w_{i}\) time
- Knapsack has capacity of \(W\) kilograms
\(\Rightarrow\) Example: \(W\) is time interval that resource is available

Goal: fill knapsack so as to maximize total value
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{Greedy Solution Won’t Work}
- Should try greedy solution first:
> Typically fast, straightforward algorithm
- Greedy idea: order by value/weight
> Issue: not infinite supply of items
> Counterexample:
- Weight of knapsack: 20
\begin{tabular}{|l|c|c|c|c|l|}
\hline Item & A & B & C & D & \\
\hline Value & 35 & 90 & 60 & 90 & Greedy: \(D, A=125\) \\
\hline Size & 5 & 15 & 10 & 10 & Optimal: D, C \(=150\) \\
\hline Ratio & 7 & 6 & 6 & 9 & \\
\hline
\end{tabular}

\section*{Towards a Recurrence...}
- What do we know about the knapsack with respect to item \(i\) ?

\section*{Towards a Recurrence...}
- What do we know about the knapsack with respect to item \(i\) ?
\(>\) Either select item \(i\) or not
> If don't select
- Pick optimum solution of remaining items
\(>\) Otherwise
What happens?
How does problem change?
Formulate the recurrence

\section*{Dynamic Programming: False Start}
- Def. OPT(i) = max profit subset of items 1, ..., i
\(>\) Case 1: OPT does not select item i
- OPT selects best of \(\{1,2, \ldots, i-1\}\)
\(>\) Case 2: OPT selects item i
- Accepting item \(i\) does not immediately imply that we will have to reject other items
> No known conflicts
- Without knowing what other items were selected before \(i\), we don't know if we have enough room for \(i\)

Need more sub-problems!

\section*{Dynamic Programming: Adding a New Variable}
- Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w
\(>\) Case 1: OPT does not select item \(i\)
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using weight limit w
\(>\) Case 2: OPT selects item \(i\)
- new weight limit \(=w-w_{i}\)
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using new weight limit, \(\boldsymbol{w} \boldsymbol{-} \boldsymbol{w}_{\boldsymbol{i}}\)
Mar 22,2 \(O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \left\{O P T(i-1, w), \quad v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}\)

\section*{Knapsack Problem: Bottom-Up}
```

Input:W,N, w
for w = 0 to W
M[0,w] = 0
for i = 1 to N
for w = 0 to W
if wi
M[i,w] = M[i-1,w]
else
M[i,w] = max{M[i-1,w], vi + M[i-1,w-wi] }
return M[n, W]

```

\section*{Knapsack Problem: Bottom-Up}

\section*{- Fill up an n-by-W array}
```

Input:W,N, w
for w = 0 to W \# base case: no items, so value is 0
M[0,w] = 0
for i = 1 to N \# for all items
for w = 0 to W \# for all possible weights
if wi > w : \# item's weight is more than available
M[i,w] = M[i-1,w]
else
M[i,w] = max{M[i-1,w], vi + M[i-1,w-wi] }
return M[n, W]

```

\section*{Looking Ahead}
- Wiki due Monday
> Chap 6: 6.1-6.4
- PS8 due Friday```

