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Objectives
• Dynamic Programming

ØReview: Weighted Interval Scheduling
ØWrap up: Least Segmented Squares
ØKnapsack
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Review
• What is the new algorithm design technique 

we’re learning?
ØWhat questions do we ask to solve the problems?
ØWhat is the process?  What are the components of 

the algorithm?
• What problems have we considered so far?
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Review Solving 
Dynamic Programming Problems
1. Determine optimal substructure of problem

Ø Define the recurrence relation
2. Define algorithm to find the value of optimal 

solution
3. Optionally, change algorithm to an iterative

rather than recursive solution
4. Define algorithm to find optimal solution
5. Analyze running time of algorithms
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Map to weighted-interval scheduling

Review
• What is the segmented least squares problem?
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Segmented Least Squares
• Points lie roughly on a sequence of line segments
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that 
minimizes f(x)
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goodness of fit number of lines

What's a reasonable choice for f(x) to 
balance accuracy and parsimony?

Segmented Least Squares
• Points lie roughly on a sequence of several line segments.
• Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that minimizes:
Ø E: sum of the sums of the squared errors in each segment
Ø L: the number of lines

• Tradeoff function:  E + c L, for some constant c > 0.
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How should we define 
an optimal solution?
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Toward a Solution
• Consider just the first or last point
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What do we know about those points?  
their segments?  cost of a segment?

Toward a Solution

• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment

• What is the remaining problem?
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Toward a Solution
• pn can only belong to one segment

Ø Segment: pi, …, pn

ØCost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1
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Next:  Formulate as a recurrence

Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, p2 , … , pj.
Ø e(i, j)  = minimum sum of squares for points 

pi, pi+1 , …, pj.

• How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

• Which option do we choose?
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Dynamic Programming: Multiway Choice
• Notation.

ØOPT(j) = minimum cost for points p1, p2 , … , pj.
Ø e(i, j)  = minimum sum of squares for points 

pi, pi+1 , …, pj.
• To compute OPT(j):

Ø Last segment contains points pi, pi+1, … , pj for some i
ØCost = e(i, j) + c + OPT(i-1).
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0 if  j = 0
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1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
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Segmented Least Squares:
Algorithm Analysis
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can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pn , c

Segmented-Least-Squares():
M[0] = 0
e[0][0] = 0
for j = 1 to n

for i = 1 to j
e[i][j] = least square error for the

segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (e[i][j] + c + M[i-1])

return M[n]

Costs?
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Segmented Least Squares:
Algorithm Analysis

• Bottleneck: computing e(i, j) for O(n2) pairs, O(n) 
per pair using previous formula
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can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pn , c

Segmented-Least-Squares():
M[0] = 0
e[0][0] = 0
for j = 1 to n

for i = 1 to j
e[i][j] = least square error for the

segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (e[i][j] + c + M[i-1])

return M[n]

O(n3)

can be improved to O(n2) by 
pre-computing various statistics

O(n2)

How do we find the solution?

Post-Processing: Finding the Solution
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FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)  

Cost?

Call as: FindSegments(n)
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Post-Processing: Finding the Solution
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FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)  

Cost? O(n2)

Call as: FindSegments(n)

KNAPSACK
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Knapsack Problem

• Given n objects and a “knapsack”

• Item i weighs wi > 0 kilograms and 

has value vi > 0

Ø Example: jobs require wi time

• Knapsack has capacity of W kilograms

Ø Example: W is time interval that resource is available
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W = 11Goal: fill knapsack so as 

to maximize total value

Greedy Solution Won’t Work
• Should try greedy solution first:

Ø Typically fast, straightforward algorithm
• Greedy idea: order by value/weight

Ø Issue: not infinite supply of items
ØCounterexample:

• Weight of knapsack: 20
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Item A B C D
Value 35 90 60 90
Size 5 15 10 10
Ratio 7 6 6 9

Greedy:   D, A = 125
Optimal: D, C = 150
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Towards a Recurrence…
• What do we know about the knapsack with 

respect to item i?
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Towards a Recurrence…
• What do we know about the knapsack with 

respect to item i?
Ø Either select item i or not
Ø If don’t select

• Pick optimum solution of remaining items
ØOtherwise
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What happens?
How does problem change?
Formulate the recurrence
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Dynamic Programming: False Start
• Def.  OPT(i) = max profit subset of items 1, …, i

ØCase 1: OPT does not select item i
• OPT selects best of { 1, 2, …, i-1 } 

ØCase 2:  OPT selects item i
• Accepting item i does not immediately imply that we 

will have to reject other items
Ø No known conflicts

• Without knowing what other items were selected 
before i, we don't know if we have enough room for i
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Need more sub-problems!

Dynamic Programming: 
Adding a New Variable
• Def. OPT(i, w) = max profit subset of items 1, …, i

with weight limit w
ØCase 1: OPT does not select item i

• OPT selects best of { 1, 2, …, i-1 } 
using weight limit w 

ØCase 2: OPT selects item i
• new weight limit = w – wi

• OPT selects best of { 1, 2, …, i–1 } 
using new weight limit, w – wi
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OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise
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Knapsack Problem: Bottom-Up
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Input: W, N, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to N
for w = 0 to W  

if wi > w :
M[i, w] = M[i-1, w]

else
M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }

return M[n, W]

Knapsack Problem: Bottom-Up
• Fill up an n-by-W array
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Input: W, N, w1,…,wN, v1,…,vN

for w = 0 to W    # base case: no items, so value is 0
M[0, w] = 0

for i = 1 to N     # for all items 
for w = 0 to W  # for all possible weights

if wi > w :  # item’s weight is more than available
M[i, w] = M[i-1, w]

else
M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }

return M[n, W]
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Looking Ahead
• Wiki due Monday

ØChap 6: 6.1-6.4
• PS8 due Friday
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