Objectives

Dynamic Programming
Sequence Alignment
Dijkstra’s Algorithm

Mar 27, 2019 CSCI211 - Sprenkle

What was the Key to Solving each of these
Problems?
Weighted interval scheduling

Segmented least squares

Knapsack

Mar 27, 2019 CSCI211 - Sprenkle

3/27/19

What was the Key to Solving each of these
Problems?

Weighted interval scheduling
Binary decision: job was in or wasn’t
Know conflicts=> reduce problem

Segmented least squares
Knew last point was definitely in one segment
Could reduce

Multiway decision—> many possibilities for segment starting
point

Knapsack
If select an item, reduce available size by item’s size
Find opt solution for smaller weight, remaining items

Mar 27, 2019 CSCI211 - Sprenkle

Review

What is the sequence alignment problem?
What is our goal?

What problem does sequence alignment help us to
solve?

Mar 27, 2019 CSCI211 - Sprenkle

3/27/19

Sequence Alignment Example

X =CTACCG

Y = TACATG

Solution: M = X5-y1 , X3-Y5, Xa-Y3, Xs5-Ya , Xg-Ye
gEDE: O

Yo Y2 Y3 Y4 Y5 Ye

cost(M) = Eaxiyj + > o+ Yy 0
i:x; hed j:y; hed

(5 EM

mismatch gap

Recall: mismatch penalty is 0 if x;and y; are the same
Mar 27, 2019 CSCI211 - Sprenkle

Sequence Alignment Case Analysis

Consider last character of the strings X and Y:
Xp and yy
M and N are not necessarily equal

i.e., strings are not necessarily the same length

What are the possibilities for xy,and yy in terms

of the alignment?
x [~ L /
y [- L /

Mar 27, 2019 CSCI211 - Sprenkle 6

3/27/19

Sequence Alignment Case Analysis

Consider last character of strings X and Y:
Xp and yy

Case 1: x,, and y,, are aligned

Case 2: x, is not matched

T « [- L
Case 3:y, is not matched y [- [/

Formulate the optimal solution’s value

Mar 27, 2019 CSCI211 - Sprenkle 7

Sequence Alignment Case Analysis

Consider last character of strings X and Y:
Xp and yy
Case 1: x,, and y,, are aligned

Case 2: xy, is not matched What are the costs

Case 3:y, is not matched for these cases?

X\ V4
OPT(i, j) = min cost of aligning strings
X1 %X ... X andyyy; ...y,

Mar 27, 2019 CSCI211 - Sprenkle 8

3/27/19

Sequence Alignment Cost Analysis

Consider last character of strings X and Y:
Xy and yy
Case 1: x,, and y,, are aligned

Pay mismatch for xy-yn + min cost of aligning rest of
strings

OPT(M, N) = dmyn + OPT(M-1, N-1)

Case 2: x,, is not matched
Pay gap for xy + min cost of aligning rest of strings
OPT(M, N) =6 + OPT(M-1, N)

Case 3:y, is not matched
Pay gap for yy + min cost of aligning rest of strings
OPT(M, N) = 6 + OPT(M, N-1)

Mar 27, 2019 CSCI211 - Sprenkle 9

Sequence Alignment Cost Analysis

Base costs? 2> iorjis0

What happens when we run out of letters in one
string before the other?

CTACCG
TACTG

Mar 27, 2019 CSCI211 - Sprenkle 10

3/27/19

Sequence Alignment:
Problem Structure

Gaps for remainder of Y

/

o if i=0 Ran out of |** string
a.y, +OPT(i-1,j-1)
OPT(i, j)=4 min 3 6+ OPT(i-1, j) otherwise
6+OPT(i, j-1)
i6 if j=0 Ran out of 2" string

\

Gaps for remainder of X

Mar 27, 2019 CSCI211 - Sprenkle 11

Sequence Alignment: Algorithm

Cost parameters

Sequence-Alignment(m, n, XiXz...Xm, Y1Y2--..Yn, 0, o)
for i =0 tom

M[i, @] = is
for j =0 ton
MI:@’ J] = J8

for i =1 tom
for j =1 ton
M[i, 31 = minCalxi, y5] + M[i-1, j-11,
o + M[1_1’ J]’
5 + M[i, j-11D
return M[m, n]

Mar 27, 2019 CSCI211 - Sprenkle 12

3/27/19

Example

X = boot

o = |, for vowel mismatch
o = 2, for other mismatches
5=2

Mar 27, 2019

CSCI211 - Sprenkle

13

Example

X = boot

|, for vowel mismatch
2, for other mismatches
2

o
o
)

Mar 27, 2019

CSCI211 - Sprenkle

14

3/27/19

Example

X = boot

o = |, for vowel mismatch
o = 2, for other mismatches
5=2

Mar 27, 2019

CSCI211 - Sprenkle

15

Example

X = boot

|, for vowel mismatch
2, for other mismatches
2

o
o
)

Mar 27, 2019

CSCI211 - Sprenkle

16

3/27/19

Example

X = boot

o = |, for vowel mismatch
o = 2, for other mismatches
5=2

Mar 27, 2019 CSCI211 - Sprenkle 17
E | What is the value for the problem?
Xample What is the solution?

X = boot

o = |, for vowel mismatch
& = 2, for other mismatches
5=2

Y = bait

j —>b

Mar 27, 2019

CSCI211 - Sprenkle 18

3/27/19

Example

X = boot Y = bait

o = |, for vowel mismatch
o = 2, for other mismatches
5=2

Mar 27, 2019 CSCI211 - Sprenkle 19

Sequence Alignment: Analysis

Sequence-Alignment(m, n, XiXz...Xm, Y1Y2-..Yn, 0, o)
for i =0 tom

M[i, @] = is
for j =0 ton
MI:@’ J] = J8

O(mn)

for i =1 tom
for j =1 ton
M[i, 31 = minCalxi, y5] + M[i-1, j-11,
o + M[l_la J]’
5 + M[i, j-11D
return M[m, n]

Costs?

Mar 27, 2019 CSCI211 - Sprenkle 20

3/27/19

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, XiX...Xm, Y1Y2--.:Yn, 0, 0O
for i =0 tom

M[i, @] = 18
for j =0 ton

for i =1 tom
for j =1 ton
M[i, j1 = minCalxi, y;1 + M[i-1, j-1],
3 + M[l_]-, J],
& + M[i, j-1D
return M[m, n]

What are the space costs?

When computing M[i,j], which entries in M are used?

Mar 27, 2019 CSCI211 - Sprenkle 21

Sequence Alignment: Analysis

Sequence-Alignment(m, n, XiXz...Xm, Y1Y2-..Yn, 0, o)
for i =0 tom

M[i, @] = is
for j =0 ton
MI:@’ J] = J8

Space Cost: O(mn)

for i =1 tom
for j =1 ton
M[i, 31 = minCalxi, y5] + M[i-1, j-11,
o + M[1_1’ J]’
5 + M[i, j-11D
return M[m, n]

Observation: to calculate the current value,
we only need the row above us and the entry to the left

Mar 27, 2019 CSCI211 - Sprenkle 22

3/27/19

SEQUENCE ALIGNMENT IN LINEAR
SPACE

Mar 27, 2019 CSCI211 - Sprenkle 23

Sequence Alignment: O(m) Space

Collapse into an m x 2 array
M[i,0] represents previous row; M[i,1] -- current

Space-Efficient-Alignment(m, N, XiXz...Xm, Y1Y2...Yn, &, o)

for i =0 tom # initialize first row
M[i, @] = ié

for j=1ton
M[@, 1] = j& # first gap

for i =1tom
M[i, 1] = minCa[xi, y5] + M[i-1, @],
& + M[1i, ,
§ + M[i-1, 11D
for i =1tom # copy current row into previous
M[i, @] = M[i, 1]
return M[m, 1]

Any drawbacks?

Mar 27, 2019 CSCI211 - Sprenkle 24

3/27/19

Sequence Alignment: O(m) Space

Collapse into an m x 2 array
MTi,0] represents previous row; M[i,1] -- current

Space-Efficient-Alignment(m, n, XiXz...Xm, Y1Y2...Yn, 8, o)

for i =0 tom # initialize first row
M[i, @] = i$

for j=1ton
M@, 1] = 33 # first gap

for i =1 tom
M[i, 1] = minCa[x:, y;]1 + M[i-1, @],

& + M[1, @],
5 + M[1i-1, 11
for i =1tom # copy current row into previous
M[i, @] = M[1, 1]
return M[m, 1] Finds optimal value but will
Miar 27, 2015 cson1r-spre. MOT be able to find alignment

Why Do We Care About Space?

For English words or sentences, probably doesn’t
matter
Matters for Biological sequence alignment

Consider: 2 strings with 100,000 symbols each
Processor can do 10 billion primitive operations
BUT dealing with a 10 GB array

Mar 27, 2019 CSCI211 - Sprenkle 26

3/27/19

Sequence Alignment: Linear Space

Can we avoid using quadratic space?
Optimal value in O(m) space and O(mn) time.
Compute OPT(i, ¢) from OPT(i-1,)
BUT, no simple way to recover alignment itself
Theorem. [Hirschberg 1975] Optimal alignment
in O(m + n) space and O(mn) time.

Clever combination of divide-and-conquer and
dynamic programming

Section 6.7

Mar 27, 2019 CSCI211 - Sprenkle 27

, for vowel mismatch

a=I
Reca” Our Example a = 2, for other mismatches
6=2

X = bait Y = boot

j —>b

Mar 27, 2019 CSCI211 - Sprenkle 28

3/27/19

Mapping to a Graph Problem

& b a i t
e
b
(@)
(@)
t
Mar 27, 2019 CSCI211 - Sprenkle

o = |, for vowel mismatch
o = 2, for other mismatches
6=2

* Horizontal and vertical
edges cost O
* Diagonal edges cost &

Goal: Find shortest path
from top-left to bottom-right

Why is this formulation
the same as the original?

29

Mapping to a Graph Problem

Mar 27, 2019 CSCI211 - Sprenkle

a = |, for vowel mismatch
a = 2, for other mismatches
6=2

* Horizontal and vertical
edges cost
* Diagonal edges cost &

Goal: Find shortest path
from top-left to bottom-right

30

3/27/19

Sequence Alignment: Forward

Edit distance graph (start)

» Let f(i, j) be shortest path from (0,0) to (i, j)
» Observation: f(i, j) = OPT(i, j)

£ Yi Y2 Y3 Y4 Ys Ye

X2

xs @

Mar 27, 2019 CSCI211 - Sprenkle 31

Sequence Alignment: Backward

Edit distance graph (end)
» Let g(i, j) be shortest path from (m, n) to (i, j)
» Can compute by reversing the edge orientations and

inverting the roles of (0, 0) and (m, n)

€ Yi Y2 Y3 Y4 Ys Ye
g L J

X2

Mar 27, 5(319 CSCI211 - Sprenkle 32

3/27/19

Sequence Alignment: Linear Space

Observation. The cost of the shortest path that

uses (i, j) is (i, j) + g(i, j)

X2

xs @

Mar 27, 2019 CSCI211 - Sprenkle

33

Sequence Alignment: Forward

Edit distance graph (start)
» Let f(i, j) be shortest path from (0,0) to (i, j)

» Can compute f(*, j) for any j in O(mn) time and
O(m + n) space j
& Yi Y2 Y3 Y4 Ys Y6

X2

Xa‘

Mar 27, 2019 CSCI211 - Sprenkle

34

3/27/19

Sequence Alignment: Backward

Edit distance graph (end)
» Let g(i, j) be shortest path from (m, n) to (i, j)

» Can compute g(*, j) foranyjin O(mn) timeand O(m+

n) space

g yi y2 y3 y4 ys Yo

X2

‘ CSCi21 35

X3
Mar 27, 2019

Sequence Alignment: Linear Space

Let g be an index that minimizes f(qg, n/2) +

g(q, n/2)
Then, the shortest path from (0, 0) to (m, n) uses (g,

n/2 Have to go through one
/) 4 node in this column

€ Yi Y2 Y3 Y4 Ys Ye
> J

X2

Xa‘

Mar 27, 2019

36

CSCI211 - Sprenkle

3/27/19

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(qg, n/2) +
g(q, n/2) using DP

» Align x,andy,,
€ Yi Y2 Y3 Y4 Ys Y

o

€

X2

%

X3
Mar 27, 2019 CSCI211 - Sprenkle 37

Sequence Alignment: Linear Space

Conquer: recursively compute optimal alignment
in each piece

» Reuse working space from one recursive call to next

€ Yi Y2 Y3 Y4 Ys Ye

X2

X3

/7/

Mar 27, 2019 CSCI211 - Sprenkle 38

3/27/19

3/27/19

Divide and Conquer Sequence Alignment

Create graph, label edges with weights
P contains node on shortest corner-to-corner path
Divide-and-Conquer-Alignment(X, Y)

Divide-and-Conquer-Alignment (X, Y):
m = length of X
n = length of Y
ifm<=2o0rn<=2
compute optimal alignment using Alignment(X, Y)
return
Space-Efficient-Alignment(X, Y[1:n/2])
Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])
g = index that minimizes f(q, n/2) + g(q, n/2)
add(q, n/2) to P
Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])

return P
T VIar 27,2019 CSCIZ1T - Sprenkle 39
a = |, for vowel mismatch
Exa m ple a = 2, for other mismatches
5§=2
0 5 b 2 a 2 i , t

Mar 27, 2019 CSCI211 - Sprenkle 40

20

Space-efficient alignment: Left

compute f (*,]), shortest path
from (0,0) to (i,)

Mar 27, 2019 CSCI211 - Sprenkle 41

Space-efficient alighment: Left
f()

Mar 27, 2019 CSCI211 - Sprenkle 42

3/27/19

21

Backward Space Efficient

Compute g(*, j), shortest path
from (m,n) to (i,)

Mar 27, 2019 CSCI211 - Sprenkle

43

IMPROVING SHORTEST PATH

Mar 27, 2019 CSCI211 - Sprenkle

44

3/27/19

22

Shortest Paths

Problem: Given a directed graph G = (V, E), with
edge weights c,,,, find shortest path from node s
to node t o

allow negative weights

Allows modeling other phenomena
9/2 10 =)
5/\6 /IS//)\
\ \6\ -16 /6
/ 30\5/“ N \

(VA

44

>4 19

t

Mar 27, 2019 CSCI211 - Sprenkle 45

Shortest Paths: Failed Attempts

Review: What was Dijkstra’s algorithm?

Dijkstra can fail if negative edge costs

2
Shortest path from's 2>t?
~

Mar 27, 2019 CSCI211 - Sprenkle 46

3/27/19

23

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs

u
2/' \3

5] Vv

~ ~
\I -6/
\t/

Re-weighting. Adding a constant to every edge
weight can fail

Why?

Mar 27, 2019 CSCI211 - Sprenkle 47

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs

u
27N

S Vv

~ ~
\I -6/
\t/

Re-weighting. Adding a constant to every edge
weight can fail

5l ~_5
: S/2 Z\t
N

Mar 27, 2019 CSCI211 - Sprenkle 48

3/27/19

24

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs

u
2/' \3

5] Vv

~ ~
\I -6/
\t/

Re-weighting. Adding a constant to every edge

weight can fail Orig: New:

5 " ~5 4 10
7 S/Z Z\t
Sy ¢ &7 3
~N S

Mar 27, 2019 CSCI211 - Sprenkle 49

12

Shortest Paths: Negative Cost Cycles

YO
7

7— (W) <0

If some path from s to t contains a negative cost

cycle, there does not exist a shortest s-t path
Why?

Otherwise, there exists one that is simple
(i.e., does not repeat nodes)

What does this mean about number of edges in path?

3/27/19

25

Shortest Paths: Negative Cost Cycles

NN
S

7— (W) <0

If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path
Otherwise, there exists one that is simple (i.e.,
does not repeat nodes)

» Path has at most n-1 edges, where n is # of nodes in
graph

Mar 27, 2019 CSCI211 - Sprenkle 51

Towards a Recurrence

OPT(i,v): minimum cost of a v-t path P using at
most i edges
» This formulation eases later discussion

Original problem is OPT(n-1, s)

Break down into subproblems based on i and v

Costs on all edges

Mar 27, 2019 CSCI211 - Sprenkle 52

3/27/19

26

Shortest Paths: Dynamic Programming

OPT(i, v) = minimum cost of a v-t path P using at
most i edges
Case 1: P uses at most /-1 edges
OPT(i, v) = OPT(i-1, v)
Case 2: P uses exactly i edges

if (v, w) is first edge, then OPT uses (v, w), and then
selects best w-t path using at most j-1 edges

Cost: cost of chosen edge

0 if i=0
OPIG.v) = min{ OPT(i-1,v), min {OPT(-1, w)+c,, }} otherwise
V,W)EE
Mar 27, 2019 CSCI211 - Sprenkle 53

Shortest Paths: Implementation

Starting node
Shortest-Path(G, s)
n = number of nodes in G
foreach node v € V
M[O, V] = »
M[@, s] =0

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) ¢ E
M[i, v] = min(M[i, v], M[i-1, w] + cw)

\

Cost of
chosen edge

Shortest path length is M[n-1, s]
7

Starting node

Mar 27, 2019 CSCI211 - Sprenkle 54

3/27/19

27

Shortest Paths: Implementation

Starting node

Shortest-Path(G, s) Costs?

n = number of nodes in G
foreach node v € V
M[Q, V] =
M[@, s] = @ # distance to yourself is 0

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + cw)

\

Cost of
chosen edge

Shortest path length is M[n-1, s]
b

Starting node

Mar 27, 2019 CSCI211 - Sprenkle

55

Shortest Paths: Runtime Analysis

Starting node
Shortest-Path(G, s)
n = number of nodes in G
foreach node v € V
M[O, V] = « O(n)
M[@, s] = @ # distance to yourself is @

for i =1 to n-1 O(nm)
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) ¢ E
M[i, v] = min(M[i, v], M[i-1, w] + Ccw)

\

Cost of
chosen edge

Shortest path length is M[n-1, s]
7

Starting node

Mar 27, 2019 CSCI211 - Sprenkle

56

3/27/19

28

Dynamic Programming Wrapup

What we didn’t cover

» 6.5: RNA Secondary Structure: Dynamic
Programming Over Intervals

» 6.7: Sequence Alignment in Linear Space
» 6.9: Shortest Paths and Distance Vector Protocols

In practice

Mar 27, 2019 CSCI211 - Sprenkle

57

Looking Ahead
PS8

Mar 27, 2019 CSCI211 - Sprenkle

58

3/27/19

29

