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Objectives
• Dynamic Programming

Ø Sequence Alignment
ØDijkstra’s Algorithm
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What was the Key to Solving each of these 

Problems?

• Weighted interval scheduling

• Segmented least squares

• Knapsack
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What was the Key to Solving each of these 
Problems?
• Weighted interval scheduling

Ø Binary decision: job was in or wasn’t
Ø Know conflictsà reduce problem

• Segmented least squares
Ø Knew last point was definitely in one segment

• Could reduce
Ø Multiway decisionà many possibilities for segment starting 

point 

• Knapsack
Ø If select an item, reduce available size by item’s size

• Find opt solution for smaller weight, remaining items
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Review
• What is the sequence alignment problem?

ØWhat is our goal?
ØWhat problem does sequence alignment help us to 

solve?
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Sequence Alignment Example
• X = CTACCG
• Y = TACATG
• Solution: M = x2-y1 , x3-y2, x4-y3, x5-y4 , x6-y6
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C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

    

€ 

cost( M ) = αxi y j
(xi, y j )∈ M
∑

mismatch
     

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
             

Recall: mismatch penalty is 0 if xi and yj are the same

Sequence Alignment Case Analysis
• Consider last character of the strings X and Y:  

xM and yN

ØM and N are not necessarily equal
• i.e., strings are not necessarily the same length

• What are the possibilities for xM and yN in terms 
of the alignment?
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x
y



3/27/19

4

Sequence Alignment Case Analysis
• Consider last character of strings X and Y: 

xM and yN
ØCase 1: xM and yN are aligned
ØCase 2: xM is not matched
ØCase 3: yN is not matched
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Formulate the optimal solution’s value

…
…

x
y

Sequence Alignment Case Analysis

• Consider last character of strings X and Y:  

xM and yN

ØCase 1: xM and yN are aligned

ØCase 2: xM is not matched

ØCase 3: yN is not matched

• OPT(i, j) = min cost of aligning strings 

x1 x2 . . . xi and y1 y2 . . . yj
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What are the costs 
for these cases?

x y
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Sequence Alignment Cost Analysis
• Consider last character of strings X and Y:  

xM and yN
ØCase 1: xM and yN are aligned

• Pay mismatch for xM-yN + min cost of aligning rest of 
strings

• OPT(M, N) = αXmYn + OPT(M-1, N-1)
ØCase 2: xM is not matched

• Pay gap for xM + min cost of aligning rest of strings
• OPT(M, N) = δ + OPT(M-1, N)

ØCase 3: yN is not matched
• Pay gap for yN + min cost of aligning rest of strings
• OPT(M, N) = δ + OPT(M, N-1)
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Sequence Alignment Cost Analysis
• Base costs? à i or j is 0

ØWhat happens when we run out of letters in one 
string before the other? 
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X = CTACCG
Y = TACTG
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Sequence Alignment:
Problem Structure
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€ 

OPT(i, j) =

" 

# 

$ 
$ $ 

% 

$ 
$ 
$ 

jδ if  i = 0

min  

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)
δ + OPT(i, j −1)

" 

# 
$ 

% 
$ 

otherwise

iδ if  j = 0

Gaps for remainder of X

Gaps for remainder of Y

Ran out of 1st string 

Ran out of 2nd string 

Sequence Alignment: Algorithm
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Cost parameters
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Example
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α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t

b
o
o
t

i

j

X = boot Y = bait

Example
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α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2
o 4
o 6
t 8

i

j

X = boot Y = bait
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Example
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X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4
o 6
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Example
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X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j
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Example
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X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Example
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X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

What is the value for the problem?  
What is the solution?
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Example
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X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence Alignment: Analysis

Mar 27, 2019 CSCI211 - Sprenkle 20

O(mn)

Costs?
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Sequence Alignment: Algorithm
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What are the space costs?

When computing M[i,j], which entries in M are used?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence Alignment: Analysis
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Space Cost: O(mn)

Observation: to calculate the current value, 
we only need the row above us and the entry to the left
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SEQUENCE ALIGNMENT IN LINEAR 
SPACE
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Sequence Alignment: O(m) Space
• Collapse into an m x 2 array

ØM[i,0] represents previous row; M[i,1] -- current 

Mar 27, 2019 CSCI211 - Sprenkle 24

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m # initialize first row

M[i, 0] = id
for j = 1 to n

M[0, 1] = jd # first gap

for i = 1 to m
M[i, 1] = min(a[xi, yj] + M[i-1, 0],

d + M[i, 0],
d + M[i-1, 1])

for i = 1 to m # copy current row into previous
M[i, 0] = M[i, 1]

return M[m, 1]
Any drawbacks?
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Sequence Alignment: O(m) Space
• Collapse into an m x 2 array

ØM[i,0] represents previous row; M[i,1] -- current 

Mar 27, 2019 CSCI211 - Sprenkle 25

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m # initialize first row

M[i, 0] = id
for j = 1 to n

M[0, 1] = jd # first gap

for i = 1 to m
M[i, 1] = min(a[xi, yj] + M[i-1, 0],

d + M[i, 0],
d + M[i-1, 1])

for i = 1 to m # copy current row into previous
M[i, 0] = M[i, 1]

return M[m, 1] Finds optimal value but will 
not be able to find alignment 

Why Do We Care About Space?
• For English words or sentences, probably doesn’t 

matter
• Matters for Biological sequence alignment

ØConsider: 2 strings with 100,000 symbols each
• Processor can do 10 billion primitive operations
• BUT dealing with a 10 GB array

Mar 27, 2019 CSCI211 - Sprenkle 26
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Sequence Alignment: Linear Space
• Can we avoid using quadratic space?

ØOptimal value in O(m) space and O(mn) time.
• Compute OPT(i, •) from OPT(i-1, •)
• BUT, no simple way to recover alignment itself

• Theorem. [Hirschberg 1975]  Optimal alignment 
in O(m + n) space and O(mn) time.
ØClever combination of divide-and-conquer and 

dynamic programming
Ø Section 6.7
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Recall Our Example
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X = bait Y = boot

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i

j

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2
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Mapping to a Graph Problem
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b

o

b

o

a i t
e

e

• Horizontal and vertical 
edges cost δ
• Diagonal edges cost α

t

Goal: Find shortest path 
from top-left to bottom-right

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

Why is this formulation 
the same as the original?

Mapping to a Graph Problem
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b

o

b

o

a i t
e

e

t

2

0

2

2 2 2

2

2

2

2

2

2

2

2 0

1

12

2

2

2

2

2

1

1

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

• Horizontal and vertical 
edges cost δ
• Diagonal edges cost α

Goal: Find shortest path 
from top-left to bottom-right
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Sequence Alignment: Forward
• Edit distance graph

Ø Let f(i, j) be shortest path from (0,0) to (i, j)
ØObservation: f(i, j) = OPT(i, j)
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i, j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

d

d

  

€ 

αxi y j

(start)

Sequence Alignment: Backward
• Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
ØCan compute by reversing the edge orientations and 

inverting the roles of (0, 0) and (m, n)
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i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

d

d
  

€ 

αxi y j

(end)
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Sequence Alignment: Linear Space
• Observation.  The cost of the shortest path that 

uses (i, j) is f(i, j) + g(i, j)
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i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
00

Sequence Alignment: Forward
• Edit distance graph

Ø Let f(i, j) be shortest path from (0,0) to (i, j)
Ø Can compute f(*, j) for any j in O(mn) time and 

O(m + n) space

Mar 27, 2019 CSCI211 - Sprenkle 34

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

j

(start)
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Sequence Alignment: Backward
• Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
Ø Can compute g(*, j) for any j in O(mn) time and       O(m + 

n) space
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i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

j

(end)

Sequence Alignment: Linear Space
• Let q be an index that minimizes f(q, n/2) + 

g(q, n/2)
• Then, the shortest path from (0, 0) to (m, n) uses (q, 

n/2)
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q, n/2

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e
e

0,0

n / 2

q

Have to go through one 
node in this column
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Sequence Alignment: Linear Space
• Divide: find index q that minimizes f(q, n/2) +        

g(q, n/2) using DP
ØAlign xq and yn/2
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q,n/2x1

x2

y1

x3

y2 y3 y4 y5 y6

e
e

0,0

q

n / 2

m,n

Sequence Alignment: Linear Space
• Conquer: recursively compute optimal alignment 

in each piece
ØReuse working space from one recursive call to next
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q,n/2x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

m,n
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Divide and Conquer Sequence Alignment
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Create graph, label edges with weights

P contains node on shortest corner-to-corner path

Divide-and-Conquer-Alignment(X, Y)

Divide-and-Conquer-Alignment (X, Y):
m = length of X
n = length of Y
if m <= 2 or n <= 2

compute optimal alignment using Alignment(X, Y)
return

Space-Efficient-Alignment(X, Y[1:n/2])
Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])
q = index that minimizes f(q, n/2) + g(q, n/2)
add(q, n/2) to P
Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])
return P

Example
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α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b

o

b

o

a i t
0

0
0,0

t m,n

2

0

2

2 2 2

2

2

2

2

2

2

2

2 0

1

12

2

2

2

2

2

1

1

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

2
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Space-efficient alignment: Left
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b

o

b

o

a
0

0
0,0

t

2

0

2

2

2

2

2

2

12

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

compute f (*, j), shortest path 
from (0,0) to (i, j)

Space-efficient alignment: Left

Mar 27, 2019 CSCI211 - Sprenkle 42

b

o

b

o

a
0
0
0,0

t

2

0

2

2

2

2

2

2

12

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

f()

4

2

1

3

5
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Backward Space Efficient

Mar 27, 2019 CSCI211 - Sprenkle 43

i t

m,n

2

2

2

2

20

2

2

2

2

2

2

2

2

2

2 2

Compute g(*, j), shortest path 
from (m,n) to (i, j) b

o

o

t

a 2

1

1

2

2

2

2

2

2

2

2

2

2

IMPROVING SHORTEST PATH
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Shortest Paths

• Problem: Given a directed graph G = (V, E), with 

edge weights cvw, find shortest path from node s
to node t

• Allows modeling other phenomena
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s

3

t

2

6

7

4

5

10

18
-16

9

6

15 -8

30

20

44

16

11

6

19

6

allow negative weights

Shortest Paths: Failed Attempts
• Review: What was Dijkstra’s algorithm?

ØDijkstra can fail if negative edge costs
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u

t

s v
2

1

3

-6

Shortest path from s àt?
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Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail

Mar 27, 2019 CSCI211 - Sprenkle 47

Why?

u

t

s v
2

1

3

-6

Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail
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s t

2

3

2

-3

3

5 5

66

0

Why?

u

t

s v
2

1

3

-6
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Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail
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s t

2

3

2

-3

3

5 5

66

0

Why?

u

t

s v
2

1

3

-6

4

3

Orig: New: 
10

12

Shortest Paths: Negative Cost Cycles

• If some path from s to t contains a negative cost 

cycle, there does not exist a shortest s-t path

• Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
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s t

W

c(W) < 0

-6

7

-4

Why?

What does this mean about number of edges in path?
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Shortest Paths: Negative Cost Cycles

• If some path from s to t contains a negative cost 
cycle, there does not exist a shortest s-t path

• Otherwise, there exists one that is simple (i.e., 
does not repeat nodes)
ØPath has at most n-1 edges, where n is # of nodes in 

graph
Mar 27, 2019 CSCI211 - Sprenkle 51

s t
W

c(W) < 0

-6
-4

7

Towards a Recurrence
• OPT(i,v): minimum cost of a v-t path P using at 

most i edges
Ø This formulation eases later discussion

• Original problem is OPT(n-1, s)
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v t

Costs on all edges

Break down into subproblems based on i and v

wcvw
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Shortest Paths: Dynamic Programming
• OPT(i, v) = minimum cost of a v-t path P using at 

most i edges
ØCase 1: P uses at most i-1 edges

• OPT(i, v) = OPT(i-1, v)
ØCase 2: P uses exactly i edges

• if (v, w) is first edge, then OPT uses (v, w), and then 
selects best w-t path using at most i-1 edges

• Cost: cost of chosen edge
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€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$ 
% 
& 

' 
( 
) 

otherwise

$ 

% 
* 

& * 

Shortest Paths: Implementation

• Shortest path length is M[n-1, s]
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Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node
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Shortest Paths: Implementation

• Shortest path length is M[n-1, s]
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Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0  # distance to yourself is 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node
Costs?

Shortest Paths: Runtime Analysis

• Shortest path length is M[n-1, s]
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Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0  # distance to yourself is 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node

O(n)

O(nm)
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Dynamic Programming Wrapup

• What we didn’t cover

Ø 6.5: RNA Secondary Structure: Dynamic 

Programming Over Intervals

Ø 6.7: Sequence Alignment in Linear Space

Ø 6.9: Shortest Paths and Distance Vector Protocols

• In practice
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Looking Ahead
• PS8

Mar 27, 2019 CSCI211 - Sprenkle 58


