
3/27/19

1

Objectives
• Dynamic Programming

Ø Sequence Alignment
ØDijkstra’s Algorithm

Mar 27, 2019 1CSCI211 - Sprenkle

What was the Key to Solving each of these 

Problems?

• Weighted interval scheduling

• Segmented least squares

• Knapsack

Mar 27, 2019 CSCI211 - Sprenkle 2



3/27/19

2

What was the Key to Solving each of these 
Problems?
• Weighted interval scheduling

Ø Binary decision: job was in or wasn’t
Ø Know conflictsà reduce problem

• Segmented least squares
Ø Knew last point was definitely in one segment

• Could reduce
Ø Multiway decisionà many possibilities for segment starting 

point 

• Knapsack
Ø If select an item, reduce available size by item’s size

• Find opt solution for smaller weight, remaining items

Mar 27, 2019 CSCI211 - Sprenkle 3

Review
• What is the sequence alignment problem?

ØWhat is our goal?
ØWhat problem does sequence alignment help us to 

solve?

Mar 27, 2019 CSCI211 - Sprenkle 4



3/27/19

3

Sequence Alignment Example
• X = CTACCG
• Y = TACATG
• Solution: M = x2-y1 , x3-y2, x4-y3, x5-y4 , x6-y6

Mar 27, 2019 CSCI211 - Sprenkle 5

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

    

€ 

cost( M ) = αxi y j
(xi, y j )∈ M
∑

mismatch
     

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
             

Recall: mismatch penalty is 0 if xi and yj are the same

Sequence Alignment Case Analysis
• Consider last character of the strings X and Y:  

xM and yN

ØM and N are not necessarily equal
• i.e., strings are not necessarily the same length

• What are the possibilities for xM and yN in terms 
of the alignment?

Mar 27, 2019 CSCI211 - Sprenkle 6

…
…

x
y



3/27/19

4

Sequence Alignment Case Analysis
• Consider last character of strings X and Y: 

xM and yN
ØCase 1: xM and yN are aligned
ØCase 2: xM is not matched
ØCase 3: yN is not matched

Mar 27, 2019 CSCI211 - Sprenkle 7

Formulate the optimal solution’s value

…
…

x
y

Sequence Alignment Case Analysis

• Consider last character of strings X and Y:  

xM and yN

ØCase 1: xM and yN are aligned

ØCase 2: xM is not matched

ØCase 3: yN is not matched

• OPT(i, j) = min cost of aligning strings 

x1 x2 . . . xi and y1 y2 . . . yj

Mar 27, 2019 CSCI211 - Sprenkle 8

What are the costs 
for these cases?

x y



3/27/19

5

Sequence Alignment Cost Analysis
• Consider last character of strings X and Y:  

xM and yN
ØCase 1: xM and yN are aligned

• Pay mismatch for xM-yN + min cost of aligning rest of 
strings

• OPT(M, N) = αXmYn + OPT(M-1, N-1)
ØCase 2: xM is not matched

• Pay gap for xM + min cost of aligning rest of strings
• OPT(M, N) = δ + OPT(M-1, N)

ØCase 3: yN is not matched
• Pay gap for yN + min cost of aligning rest of strings
• OPT(M, N) = δ + OPT(M, N-1)

Mar 27, 2019 CSCI211 - Sprenkle 9

Sequence Alignment Cost Analysis
• Base costs? à i or j is 0

ØWhat happens when we run out of letters in one 
string before the other? 

Mar 27, 2019 CSCI211 - Sprenkle 10

X = CTACCG
Y = TACTG



3/27/19

6

Sequence Alignment:
Problem Structure

Mar 27, 2019 CSCI211 - Sprenkle 11

  

€ 

OPT(i, j) =

" 

# 

$ 
$ $ 

% 

$ 
$ 
$ 

jδ if  i = 0

min  

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)
δ + OPT(i, j −1)

" 

# 
$ 

% 
$ 

otherwise

iδ if  j = 0

Gaps for remainder of X

Gaps for remainder of Y

Ran out of 1st string 

Ran out of 2nd string 

Sequence Alignment: Algorithm

Mar 27, 2019 CSCI211 - Sprenkle 12

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Cost parameters



3/27/19

7

Example

Mar 27, 2019 CSCI211 - Sprenkle 13

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t

b
o
o
t

i

j

X = boot Y = bait

Example

Mar 27, 2019 CSCI211 - Sprenkle 14

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2
o 4
o 6
t 8

i

j

X = boot Y = bait



3/27/19

8

Example

Mar 27, 2019 CSCI211 - Sprenkle 15

X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4
o 6
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Example

Mar 27, 2019 CSCI211 - Sprenkle 16

X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j



3/27/19

9

Example

Mar 27, 2019 CSCI211 - Sprenkle 17

X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Example

Mar 27, 2019 CSCI211 - Sprenkle 18

X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

What is the value for the problem?  
What is the solution?



3/27/19

10

Example

Mar 27, 2019 CSCI211 - Sprenkle 19

X = boot Y = bait

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

i

j

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence Alignment: Analysis

Mar 27, 2019 CSCI211 - Sprenkle 20

O(mn)

Costs?



3/27/19

11

Sequence Alignment: Algorithm

Mar 27, 2019 CSCI211 - Sprenkle 21

What are the space costs?

When computing M[i,j], which entries in M are used?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]

Sequence Alignment: Analysis

Mar 27, 2019 CSCI211 - Sprenkle 22

Space Cost: O(mn)

Observation: to calculate the current value, 
we only need the row above us and the entry to the left



3/27/19

12

SEQUENCE ALIGNMENT IN LINEAR 
SPACE

Mar 27, 2019 CSCI211 - Sprenkle 23

Sequence Alignment: O(m) Space
• Collapse into an m x 2 array

ØM[i,0] represents previous row; M[i,1] -- current 

Mar 27, 2019 CSCI211 - Sprenkle 24

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m # initialize first row

M[i, 0] = id
for j = 1 to n

M[0, 1] = jd # first gap

for i = 1 to m
M[i, 1] = min(a[xi, yj] + M[i-1, 0],

d + M[i, 0],
d + M[i-1, 1])

for i = 1 to m # copy current row into previous
M[i, 0] = M[i, 1]

return M[m, 1]
Any drawbacks?



3/27/19

13

Sequence Alignment: O(m) Space
• Collapse into an m x 2 array

ØM[i,0] represents previous row; M[i,1] -- current 

Mar 27, 2019 CSCI211 - Sprenkle 25

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) 
for i = 0 to m # initialize first row

M[i, 0] = id
for j = 1 to n

M[0, 1] = jd # first gap

for i = 1 to m
M[i, 1] = min(a[xi, yj] + M[i-1, 0],

d + M[i, 0],
d + M[i-1, 1])

for i = 1 to m # copy current row into previous
M[i, 0] = M[i, 1]

return M[m, 1] Finds optimal value but will 
not be able to find alignment 

Why Do We Care About Space?
• For English words or sentences, probably doesn’t 

matter
• Matters for Biological sequence alignment

ØConsider: 2 strings with 100,000 symbols each
• Processor can do 10 billion primitive operations
• BUT dealing with a 10 GB array

Mar 27, 2019 CSCI211 - Sprenkle 26



3/27/19

14

Sequence Alignment: Linear Space
• Can we avoid using quadratic space?

ØOptimal value in O(m) space and O(mn) time.
• Compute OPT(i, •) from OPT(i-1, •)
• BUT, no simple way to recover alignment itself

• Theorem. [Hirschberg 1975]  Optimal alignment 
in O(m + n) space and O(mn) time.
ØClever combination of divide-and-conquer and 

dynamic programming
Ø Section 6.7

Mar 27, 2019 CSCI211 - Sprenkle 27

Recall Our Example

Mar 27, 2019 CSCI211 - Sprenkle 28

X = bait Y = boot

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i

j

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2



3/27/19

15

Mapping to a Graph Problem

Mar 27, 2019 CSCI211 - Sprenkle 29

b

o

b

o

a i t
e

e

• Horizontal and vertical 
edges cost δ
• Diagonal edges cost α

t

Goal: Find shortest path 
from top-left to bottom-right

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

Why is this formulation 
the same as the original?

Mapping to a Graph Problem

Mar 27, 2019 CSCI211 - Sprenkle 30

b

o

b

o

a i t
e

e

t

2

0

2

2 2 2

2

2

2

2

2

2

2

2 0

1

12

2

2

2

2

2

1

1

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

2

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

• Horizontal and vertical 
edges cost δ
• Diagonal edges cost α

Goal: Find shortest path 
from top-left to bottom-right



3/27/19

16

Sequence Alignment: Forward
• Edit distance graph

Ø Let f(i, j) be shortest path from (0,0) to (i, j)
ØObservation: f(i, j) = OPT(i, j)

Mar 27, 2019 CSCI211 - Sprenkle 31

i, j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

d

d

  

€ 

αxi y j

(start)

Sequence Alignment: Backward
• Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
ØCan compute by reversing the edge orientations and 

inverting the roles of (0, 0) and (m, n)

Mar 27, 2019 CSCI211 - Sprenkle 32

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

d

d
  

€ 

αxi y j

(end)



3/27/19

17

Sequence Alignment: Linear Space
• Observation.  The cost of the shortest path that 

uses (i, j) is f(i, j) + g(i, j)

Mar 27, 2019 CSCI211 - Sprenkle 33

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
00

Sequence Alignment: Forward
• Edit distance graph

Ø Let f(i, j) be shortest path from (0,0) to (i, j)
Ø Can compute f(*, j) for any j in O(mn) time and 

O(m + n) space

Mar 27, 2019 CSCI211 - Sprenkle 34

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

j

(start)



3/27/19

18

Sequence Alignment: Backward
• Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
Ø Can compute g(*, j) for any j in O(mn) time and       O(m + 

n) space

Mar 27, 2019 CSCI211 - Sprenkle 35

i,j

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

j

(end)

Sequence Alignment: Linear Space
• Let q be an index that minimizes f(q, n/2) + 

g(q, n/2)
• Then, the shortest path from (0, 0) to (m, n) uses (q, 

n/2)

Mar 27, 2019 CSCI211 - Sprenkle 36

q, n/2

m,n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e
e

0,0

n / 2

q

Have to go through one 
node in this column



3/27/19

19

Sequence Alignment: Linear Space
• Divide: find index q that minimizes f(q, n/2) +        

g(q, n/2) using DP
ØAlign xq and yn/2

Mar 27, 2019 CSCI211 - Sprenkle 37

q,n/2x1

x2

y1

x3

y2 y3 y4 y5 y6

e
e

0,0

q

n / 2

m,n

Sequence Alignment: Linear Space
• Conquer: recursively compute optimal alignment 

in each piece
ØReuse working space from one recursive call to next

Mar 27, 2019 CSCI211 - Sprenkle 38

q,n/2x1

x2

y1

x3

y2 y3 y4 y5 y6
e

e
0,0

m,n



3/27/19

20

Divide and Conquer Sequence Alignment

Mar 27, 2019 CSCI211 - Sprenkle 39

Create graph, label edges with weights

P contains node on shortest corner-to-corner path

Divide-and-Conquer-Alignment(X, Y)

Divide-and-Conquer-Alignment (X, Y):
m = length of X
n = length of Y
if m <= 2 or n <= 2

compute optimal alignment using Alignment(X, Y)
return

Space-Efficient-Alignment(X, Y[1:n/2])
Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])
q = index that minimizes f(q, n/2) + g(q, n/2)
add(q, n/2) to P
Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])
Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])
return P

Example

Mar 27, 2019 CSCI211 - Sprenkle 40

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b

o

b

o

a i t
0

0
0,0

t m,n

2

0

2

2 2 2

2

2

2

2

2

2

2

2 0

1

12

2

2

2

2

2

1

1

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

2



3/27/19

21

Space-efficient alignment: Left

Mar 27, 2019 CSCI211 - Sprenkle 41

b

o

b

o

a
0

0
0,0

t

2

0

2

2

2

2

2

2

12

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

compute f (*, j), shortest path 
from (0,0) to (i, j)

Space-efficient alignment: Left

Mar 27, 2019 CSCI211 - Sprenkle 42

b

o

b

o

a
0
0
0,0

t

2

0

2

2

2

2

2

2

12

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

f()

4

2

1

3

5



3/27/19

22

Backward Space Efficient

Mar 27, 2019 CSCI211 - Sprenkle 43

i t

m,n

2

2

2

2

20

2

2

2

2

2

2

2

2

2

2 2

Compute g(*, j), shortest path 
from (m,n) to (i, j) b

o

o

t

a 2

1

1

2

2

2

2

2

2

2

2

2

2

IMPROVING SHORTEST PATH

Mar 27, 2019 CSCI211 - Sprenkle 44



3/27/19

23

Shortest Paths

• Problem: Given a directed graph G = (V, E), with 

edge weights cvw, find shortest path from node s
to node t

• Allows modeling other phenomena

Mar 27, 2019 CSCI211 - Sprenkle 45

s

3

t

2

6

7

4

5

10

18
-16

9

6

15 -8

30

20

44

16

11

6

19

6

allow negative weights

Shortest Paths: Failed Attempts
• Review: What was Dijkstra’s algorithm?

ØDijkstra can fail if negative edge costs

Mar 27, 2019 CSCI211 - Sprenkle 46

u

t

s v
2

1

3

-6

Shortest path from s àt?



3/27/19

24

Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail

Mar 27, 2019 CSCI211 - Sprenkle 47

Why?

u

t

s v
2

1

3

-6

Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail

Mar 27, 2019 CSCI211 - Sprenkle 48

s t

2

3

2

-3

3

5 5

66

0

Why?

u

t

s v
2

1

3

-6



3/27/19

25

Shortest Paths: Failed Attempts
• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge 
weight can fail

Mar 27, 2019 CSCI211 - Sprenkle 49

s t

2

3

2

-3

3

5 5

66

0

Why?

u

t

s v
2

1

3

-6

4

3

Orig: New: 
10

12

Shortest Paths: Negative Cost Cycles

• If some path from s to t contains a negative cost 

cycle, there does not exist a shortest s-t path

• Otherwise, there exists one that is simple
(i.e., does not repeat nodes)

Mar 27, 2019 CSCI211 - Sprenkle 50

s t

W

c(W) < 0

-6

7

-4

Why?

What does this mean about number of edges in path?



3/27/19

26

Shortest Paths: Negative Cost Cycles

• If some path from s to t contains a negative cost 
cycle, there does not exist a shortest s-t path

• Otherwise, there exists one that is simple (i.e., 
does not repeat nodes)
ØPath has at most n-1 edges, where n is # of nodes in 

graph
Mar 27, 2019 CSCI211 - Sprenkle 51

s t
W

c(W) < 0

-6
-4

7

Towards a Recurrence
• OPT(i,v): minimum cost of a v-t path P using at 

most i edges
Ø This formulation eases later discussion

• Original problem is OPT(n-1, s)

Mar 27, 2019 CSCI211 - Sprenkle 52

v t

Costs on all edges

Break down into subproblems based on i and v

wcvw



3/27/19

27

Shortest Paths: Dynamic Programming
• OPT(i, v) = minimum cost of a v-t path P using at 

most i edges
ØCase 1: P uses at most i-1 edges

• OPT(i, v) = OPT(i-1, v)
ØCase 2: P uses exactly i edges

• if (v, w) is first edge, then OPT uses (v, w), and then 
selects best w-t path using at most i-1 edges

• Cost: cost of chosen edge

Mar 27, 2019 CSCI211 - Sprenkle 53

  

€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$ 
% 
& 

' 
( 
) 

otherwise

$ 

% 
* 

& * 

Shortest Paths: Implementation

• Shortest path length is M[n-1, s]

Mar 27, 2019 CSCI211 - Sprenkle 54

Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node



3/27/19

28

Shortest Paths: Implementation

• Shortest path length is M[n-1, s]

Mar 27, 2019 CSCI211 - Sprenkle 55

Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0  # distance to yourself is 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node
Costs?

Shortest Paths: Runtime Analysis

• Shortest path length is M[n-1, s]

Mar 27, 2019 CSCI211 - Sprenkle 56

Shortest-Path(G, s) 
n = number of nodes in G
foreach node v Î V

M[0, v] = ¥
M[0, s] = 0  # distance to yourself is 0

for i = 1 to n-1
foreach node v Î V

M[i, v] = M[i-1, v]
foreach edge (v, w) Î E

M[i, v] = min(M[i, v], M[i-1, w] + cvw )

Starting node

Cost of 
chosen edge

Starting node

O(n)

O(nm)



3/27/19

29

Dynamic Programming Wrapup

• What we didn’t cover

Ø 6.5: RNA Secondary Structure: Dynamic 

Programming Over Intervals

Ø 6.7: Sequence Alignment in Linear Space

Ø 6.9: Shortest Paths and Distance Vector Protocols

• In practice

Mar 27, 2019 CSCI211 - Sprenkle 57

Looking Ahead
• PS8

Mar 27, 2019 CSCI211 - Sprenkle 58


