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Objectives
• Network Flow

ØMax flow
ØMin cut
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Motivating Flow Network Problems
• Modeling transportation networks

Ø Edges: carry traffic
ØNodes: pass traffic between edges

• Can represent many different types of problems
Ø Instead of looking at all possibilities, formulate as a 

flow problem
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Flow Network
• G = (V, E) = directed graph, no parallel edges
• Two distinguished nodes: s = source, t = sink
• c(e) = capacity of edge e, > 0
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Flows: Definitions
• An s-t flow is a function that satisfies

ØCapacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
ØConservation condition: For each v ∈ V – {s, t}:         

∑e into y  f(e) =  ∑e out of y  f(e)
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Flows: Definitions
• The value of a flow f is v(f) = ∑e out of s f(e)        
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Maximum Flow Problem
• Make network most efficient

ØUse most of available capacity
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Goal: Find s-t flow of maximum value
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Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck
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Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck
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Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck
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RESIDUAL GRAPHS
Towards a solution…

March 29, 2019 CSCI211 - Sprenkle 10



3/29/19

6

Towards a Residual Graph
• Original edge: e = (u, v)  Î E

Ø Flow f(e), capacity c(e)
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Towards a Residual Graph
• Original edge: e = (u, v)  Î E

Ø Flow f(e), capacity c(e)
• Residual edge

Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e) 

• To undo flow
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Residual Graph: Gf

• Original edge: e = (u, v)  Î E
Ø Flow f(e), capacity c(e)

• Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e) 

• To undo flow

• Residual graph:  Gf = (V, Ef )
ØResidual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)}  È {eR : f(e) > 0}
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Applying Residual Graph
• Used to find the maximum flow

ØUse similar idea to greedy algorithm

• Residual path: simple s-t path in Gf

ØAlso known as augmenting path
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Augmenting Path Algorithm
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Ford-Fulkerson(G, s, t, c):
foreach e Î E  f(e) = 0  # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P)     # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P):
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b  # forward edge, ê flow 

return f

c=capacity

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 16

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

capacity



3/29/19

9

Ford-Fulkerson Algorithm
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What does the residual graph look like?

capacity

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 24

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19

How do we know we’re done?
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Ford-Fulkerson Algorithm
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Flow value = 19Cut capacity = 19

Analyzing Augmenting Path Algorithm
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Ford-Fulkerson(G, s, t, c)
foreach e Î E  f(e) = 0  # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P)     # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow 

return f

Why does alg work? What is happening at each iteration?
What is the running time? Need more analysis …
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MINIMUM CUTS
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Cuts
• An s-t cut is a partition (A, B) of V with s Î A and 

t Î B
• The capacity of a cut (A, B) is
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Capacity = 9 + 15 + 8 + 30
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of this cut?
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Minimum Cut Problem
• Find an s-t cut of minimum capacity

ØPuts upperbound on maximum flow
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Same graph, 
different cut

Recall
• The value of a flow f is v(f) = ∑e out of s  f(e)        
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Flow Value Lemma

• Let f be any flow, and let (A, B) be any s-t cut.  

Then, the value of the flow is = fout(A) – fin(A).
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Flow Value Lemma
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• Let f be any flow, and let (A, B) be any s-t cut. 

Then, the value of the flow is = fout(A) – fin(A).
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CSCI211 - Sprenkle

Possibilities for edge e:
• Both ends in A (0)
• Points out from A (+), Points in to A (-)

Flow Value Lemma (FVL)
• Let f be any flow, and let (A, B) be any s-t cut.
• Then
• Pf.   

March 29, 2019
33

by flow conservation, 
all terms except v = s are 0By definition

A B

Weak Duality
• Let f be any flow and let (A, B) be any s-t cut.
➜Then the value of the flow is at most the 

cut’s capacity
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Cut capacity = 30   Þ Flow value £ 30 
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Weak Duality

• Let f be any flow.  Then, for any s-t cut (A, B) 

v(f) £ cap(A, B).

• Pf.
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Certificate of Optimality
• Corollary.  Let f be any flow, and 

let (A, B) be any cut.  If v(f) = cap(A, B), 
then f is a max flow and (A, B) is a min cut.
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Recall: Residual Graph Gf

• Original edge: e = (u, v)  Î E
Ø Flow f(e), capacity c(e)

• Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e) 

• To undo flow

• Residual graph:  Gf = (V, Ef )
ØResidual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)}  È {eR : f(e) > 0}
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Recall: Augmenting Path Algorithm
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Ford-Fulkerson(G, s, t, c)
foreach e Î E  f(e) = 0  # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P)     # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow 

return f
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Intuition Behind Correctness of 
F-F Algorithm

• Let A be set of vertices reachable from s in 
residual graph at end of F-F alg execution

• By definition of A, s Î A
• By definition of the F-F algorithm’s resulting 

flow, t Ï A
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Ford-Fulkerson Algorithm
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•What do we know about the flow out of A?
•What do we know about the flow into A?

A: nodes reachable from s 

A
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Ford-Fulkerson Algorithm
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•What do we know about the flow out of A?
•What do we know about the flow into A?

A

•All edges out of A are completely saturated
•All edges into A are completely unused

A

Max-Flow Min-Cut Theorem

• Proof strategy. Prove both simultaneously by 
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

42March 29, 2019 CSCI211 - Sprenkle

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Augmenting path theorem.  
Flow f is a max flow iff there are no augmenting paths. 

See formal proof in book
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Analyzing Augmenting Path Algorithm
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Ford-Fulkerson(G, s, t, c)
foreach e Î E  f(e) = 0  # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P)     # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow 

return f

Analyzing Augmenting Path Algorithm
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Ford-Fulkerson(G, s, t, c)
foreach e Î E  f(e) = 0  # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P)     # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow 

return f

O(m)

O(m)

O(m)

O(m)

O(n)
O(n)

O(1)
O(1)

Total: O(n) à O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m);  Iterations: O(F) iterations, where F = max flow
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Running Time

• Assumption.  All capacities are integers between 1 and F.

• Invariant.  Every flow value f(e) and every residual capacity’s 
cf(e) remains an integer throughout algorithm.

• Theorem. Algorithm terminates in at most v(f*) £ nF iterations.

• Pf.  Each augmentation increases value by at least 1.

• Corollary.  If F = 1, Ford-Fulkerson runs in O(mn) time.

• Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an integer.

• Pf.  Since algorithm terminates, theorem follows from 
invariant. 
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Looking Ahead
• PS 9 (last one!) due Friday

Ø See course schedule page for starter code
• Wiki due Monday – Network flows focus

March 29, 2019 CSCI211 - Sprenkle 46


