
3/29/19

1

Objectives
• Network Flow

ØMax flow
ØMin cut

March 29, 2019 1CSCI211 - Sprenkle

Motivating Flow Network Problems
• Modeling transportation networks

Ø Edges: carry traffic
ØNodes: pass traffic between edges

• Can represent many different types of problems
Ø Instead of looking at all possibilities, formulate as a

flow problem

March 29, 2019 CSCI211 - Sprenkle 2

3/29/19

2

Flow Network
• G = (V, E) = directed graph, no parallel edges
• Two distinguished nodes: s = source, t = sink
• c(e) = capacity of edge e, > 0

March 29, 2019 CSCI211 - Sprenkle 3

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

Flows: Definitions
• An s-t flow is a function that satisfies

ØCapacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
ØConservation condition: For each v ∈ V – {s, t}:

∑e into y f(e) = ∑e out of y f(e)

March 29, 2019 CSCI211 - Sprenkle 4

Flow can’t exceed
capacity

Flow in == Flow out

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

0

4

15

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

3/29/19

3

Flows: Definitions
• The value of a flow f is v(f) = ∑e out of s f(e)

March 29, 2019 CSCI211 - Sprenkle 5

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4
0

capacity
flow

0

4

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Maximum Flow Problem
• Make network most efficient

ØUse most of available capacity

March 29, 2019 CSCI211 - Sprenkle 6

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

Goal: Find s-t flow of maximum value

3/29/19

4

Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck

March 29, 2019 CSCI211 - Sprenkle 7

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck

March 29, 2019 CSCI211 - Sprenkle 8

s

1

2

t

10

10

0 0

0 0

0

20

20

30

X

X

X

20

20

20

Is this optimal?

Flow value = 20

3/29/19

5

Towards a Max Flow Algorithm
• Greedy algorithm

Ø Start all edges e Î E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck

March 29, 2019 CSCI211 - Sprenkle 9

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20 opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality does not Þ global optimality

RESIDUAL GRAPHS
Towards a solution…

March 29, 2019 CSCI211 - Sprenkle 10

3/29/19

6

Towards a Residual Graph
• Original edge: e = (u, v) Î E

Ø Flow f(e), capacity c(e)

March 29, 2019 CSCI211 - Sprenkle 11

u v17

6

capacity

flow

Towards a Residual Graph
• Original edge: e = (u, v) Î E

Ø Flow f(e), capacity c(e)
• Residual edge

Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

• To undo flow

March 29, 2019 CSCI211 - Sprenkle 12

u v11

residual capacity

6

residual capacity

u v17

6

capacity

flow

3/29/19

7

Residual Graph: Gf

• Original edge: e = (u, v) Î E
Ø Flow f(e), capacity c(e)

• Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

• To undo flow

• Residual graph: Gf = (V, Ef)
ØResidual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)} È {eR : f(e) > 0}

March 29, 2019 CSCI211 - Sprenkle 13

u v11

residual capacity

6

residual capacity

Forward edges Backward edges

u v17

6

capacity

flow

Applying Residual Graph
• Used to find the maximum flow

ØUse similar idea to greedy algorithm

• Residual path: simple s-t path in Gf

ØAlso known as augmenting path

March 29, 2019 CSCI211 - Sprenkle 14

3/29/19

8

Augmenting Path Algorithm

March 29, 2019 CSCI211 - Sprenkle 15

Ford-Fulkerson(G, s, t, c):
foreach e Î E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P):
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow

return f

c=capacity

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 16

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

capacity

3/29/19

9

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 17

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

What does the residual graph look like?

capacity

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 18

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

s

2

3

4

5 t

Gf:

capacity

3/29/19

10

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 19

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

s

2

3

4

5 t10 9

4

1062

Gf:

10 8

10

residual capacity

Bottleneck

capacity

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 20

s

2

3

4

5 t10

10

9

8

4

10

1062

8

0

0

0 0 8

8

0 0

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

10

2
10

X

X

X2X

Flow value = 8

3/29/19

11

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 21

0

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

G:

s

2

3

4

5 t

4

2

Gf:

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 22

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

G:

s

2

3

4

5 t1

6

Gf:

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16

3/29/19

12

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 23

s

2

3

4

5 t10

10

9

8

4

10

1062

10

2

8

8 8 10

8

0

G:

s

2

3

4

5 t

62

Gf:

10

10

8

6

8

8

2

2 1

2

8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 24

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19

How do we know we’re done?

3/29/19

13

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 25

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

What is reachable from s

Flow value = 19Cut capacity = 19

Analyzing Augmenting Path Algorithm

March 29, 2019 CSCI211 - Sprenkle 26

Ford-Fulkerson(G, s, t, c)
foreach e Î E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow

return f

Why does alg work? What is happening at each iteration?
What is the running time? Need more analysis …

3/29/19

14

MINIMUM CUTS

March 29, 2019 CSCI211 - Sprenkle 27

Cuts
• An s-t cut is a partition (A, B) of V with s Î A and

t Î B
• The capacity of a cut (A, B) is

March 29, 2019 CSCI211 - Sprenkle 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

€

cap(A, B) = c(e)
e out of A
∑

Capacity = 9 + 15 + 8 + 30
= 62

BWhat is the capacity
of this cut?

3/29/19

15

Minimum Cut Problem
• Find an s-t cut of minimum capacity

ØPuts upperbound on maximum flow

March 29, 2019 CSCI211 - Sprenkle 29

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

A
Capacity = 10 + 8 + 10

= 28

B

Same graph,
different cut

Recall
• The value of a flow f is v(f) = ∑e out of s f(e)

March 29, 2019 CSCI211 - Sprenkle 30

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4
0

capacity
flow

0

4

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

3/29/19

16

Flow Value Lemma

• Let f be any flow, and let (A, B) be any s-t cut.

Then, the value of the flow is = fout(A) – fin(A).

March 29, 2019 CSCI211 - Sprenkle 31

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4

A

B

What is the value
of this flow?

Flow Value Lemma

March 29, 2019 CSCI211 - Sprenkle 32

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

B

• Let f be any flow, and let (A, B) be any s-t cut.

Then, the value of the flow is = fout(A) – fin(A).

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

3/29/19

17

CSCI211 - Sprenkle

Possibilities for edge e:
• Both ends in A (0)
• Points out from A (+), Points in to A (-)

Flow Value Lemma (FVL)
• Let f be any flow, and let (A, B) be any s-t cut.
• Then
• Pf.

March 29, 2019
33

by flow conservation,
all terms except v = s are 0By definition

A B

Weak Duality
• Let f be any flow and let (A, B) be any s-t cut.
➜Then the value of the flow is at most the

cut’s capacity

March 29, 2019 CSCI211 - Sprenkle 34

Cut capacity = 30 Þ Flow value £ 30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

3/29/19

18

Weak Duality

• Let f be any flow. Then, for any s-t cut (A, B)

v(f) £ cap(A, B).

• Pf.

March 29, 2019 CSCI211 - Sprenkle 35

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B) s

t

A B

7

6

8
4By FVL

Certificate of Optimality
• Corollary. Let f be any flow, and

let (A, B) be any cut. If v(f) = cap(A, B),
then f is a max flow and (A, B) is a min cut.

March 29, 2019 CSCI211 - Sprenkle 36

Value of flow = 28
Cut capacity = 28 Þ

Flow value £ 28
10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

B

3/29/19

19

Recall: Residual Graph Gf

• Original edge: e = (u, v) Î E
Ø Flow f(e), capacity c(e)

• Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

• To undo flow

• Residual graph: Gf = (V, Ef)
ØResidual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)} È {eR : f(e) > 0}

March 29, 2019 CSCI211 - Sprenkle 37

u v11

residual capacity

6

residual capacity

Forward edges Backward edges

u v17

6

capacity

flow

Recall: Augmenting Path Algorithm

March 29, 2019 CSCI211 - Sprenkle 38

Ford-Fulkerson(G, s, t, c)
foreach e Î E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow

return f

3/29/19

20

Intuition Behind Correctness of
F-F Algorithm

• Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

• By definition of A, s Î A
• By definition of the F-F algorithm’s resulting

flow, t Ï A

March 29, 2019 CSCI211 - Sprenkle 39

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 40

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

A

•What do we know about the flow out of A?
•What do we know about the flow into A?

A: nodes reachable from s

A

3/29/19

21

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 41

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

•What do we know about the flow out of A?
•What do we know about the flow into A?

A

•All edges out of A are completely saturated
•All edges into A are completely unused

A

Max-Flow Min-Cut Theorem

• Proof strategy. Prove both simultaneously by
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

42March 29, 2019 CSCI211 - Sprenkle

Max-flow min-cut theorem. [Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Augmenting path theorem.
Flow f is a max flow iff there are no augmenting paths.

See formal proof in book

3/29/19

22

Analyzing Augmenting Path Algorithm

March 29, 2019 CSCI211 - Sprenkle 43

Ford-Fulkerson(G, s, t, c)
foreach e Î E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow

return f

Analyzing Augmenting Path Algorithm

March 29, 2019 CSCI211 - Sprenkle 44

Ford-Fulkerson(G, s, t, c)
foreach e Î E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gf # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e Î P

if (e Î E) f(e) = f(e) + b # forward edge, é flow
else f(eR) = f(e) - b # forward edge, ê flow

return f

O(m)

O(m)

O(m)

O(m)

O(n)
O(n)

O(1)
O(1)

Total: O(n) à O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m); Iterations: O(F) iterations, where F = max flow

3/29/19

23

Running Time

• Assumption. All capacities are integers between 1 and F.

• Invariant. Every flow value f(e) and every residual capacity’s
cf(e) remains an integer throughout algorithm.

• Theorem. Algorithm terminates in at most v(f*) £ nF iterations.

• Pf. Each augmentation increases value by at least 1.

• Corollary. If F = 1, Ford-Fulkerson runs in O(mn) time.

• Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an integer.

• Pf. Since algorithm terminates, theorem follows from
invariant.

45March 29, 2019 CSCI211 - Sprenkle

Looking Ahead
• PS 9 (last one!) due Friday

Ø See course schedule page for starter code
• Wiki due Monday – Network flows focus

March 29, 2019 CSCI211 - Sprenkle 46

