Objectives

Network Flow

Max flow
Min cut

March 29, 2019 CSCI211 - Sprenkle 1

Motivating Flow Network Problems

Modeling transportation networks
Edges: carry traffic
Nodes: pass traffic between edges
Can represent many different types of problems

Instead of looking at all possibilities, formulate as a
flow problem

March 29, 2019 CSCI211 - Sprenkle 2

3/29/19

Flow Network

G = (V, E) = directed graph, no parallel edges
Two distinguished nodes: s = source, t = sink
c(e) = capacity of edge e, >0

S

IO\
10 t) sink
5 10

source (s

.
N

I5
capacity — \

March 29, 2019 CSCI211 - Sprenkle 3

|
™~
|

Flows: Definitions

Flow can’t exceed
capacity

An s-t flow is a function that satisfies 2
Capacity condition: For each e € E: 0 < f(e) < c(e)
Conservation condition: For eachv € V —{s, t}:

Flow in == Fl
2e intoy fle) = Yo out ofy f(e) <+ Flow in ow out
0

YIRS
/g

|
N
|

4
l 4 \

source(s 3 8 10 t) sink
I 0 0

. 4 15 0
capacity — |5 é 10
flow — 0 l 0 \l /

4 30 7

March 29, 2019 CSCI211 - Sprenkle 4

3/29/19

Flows: Definitions

The value of a flow fis v(f) = 3. outof s f(€)

0
2 9 5
4 0 \I/\O
10 15 15 0 10

capacity = |5
flow = 0 \4/ 0 \/g/
4 30 7 Value = 4

March 29, 2019 CSCI211 - Sprenkle

Maximum Flow Problem

Make network most efficient

» Use most of available capacity

Goal: Find s-t flow of maximum value

capacity = |5

March 29, 2019 CSCI211 - Sprenkle

4
flow =14 J) \J Value = 28
4 30 7

6

3/29/19

Towards a Max Flow Algorithm

Greedy algorithm
» Start all edgese e Eatf(e)=0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck

20 10

S\ 30 0 &
10 20
0 \ 0 Flow value = 0
b
2
March 29, 2019 CSCI211 - Sprenkle

Towards a Max Flow Algorithm

Greedy algorithm
» Start alledgese € Eatf(e)=0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck
1

20 X \ 0 Is this optimal?

20 10
s\ 30 20 t
10 20
0 \ X 20 Flow value = 20
2)
March 29, 2019 CSCI211 - Sprenkle

3/29/19

Towards a Max Flow Algorithm

Greedy algorithm
Start all edgese € Eatf(e) =0
Find an s-t path P with the most capacity: f(e) < c(e)
Augment flow along path P
Repeat until you get stuck

locally optimality does not = global optimality

1 1

20/ \o zo/ \|o
/20 |o\ /20 |o\
\ 30 20 /t s\ 30 10 /t
greedy =20 10 20 10 20
o\ /20 |o\ /20 opt = 30

2 2

March 29, 2019 CSCI211 - Sprenkle 9

Towards a solution...

RESIDUAL GRAPHS

March 29, 2019 CSCI211 - Sprenkle 10

3/29/19

3/29/19

Towards a Residual Graph
Original edge: e=(u,v) € E capacity
> Flow f(e), capacity c(e) ! 7 -
6 «—flow
March 29, 2019 CSCI211 - Sprenkle 11
Towards a Residual Graph
Original edge: e=(u,v) € E j capacity
u 17 v

» Flow f(e), capacity c(e)
6 «—flow

Residual edge

» e =(u, v) w/ capacity c(e) - f(e)

residual capacity
> eR = (V, u) with capacity f(E) 1 I v

To undo flow ~N —

N residual capacity

March 29, 2019 CSCI211 - Sprenkle 12

3/29/19

Residual Graph: G;

Original edge:e=(u,v) € E capacit

» Flow f(e), capacity c(e)
6 «—flow

Residual edge
» e = (u, v) w/ capacity c(e) - f(e) sl capacity
» eR = (v, u) with capacity f(e) ; | 2
To undo flow ~ —
Residual graph: G¢=(V, Ey) resdal capacy
» Residual edges with positive residual capacity
> E; = Ee . f(e) < c(e)}' U l{eR : f(e) > O}'

1

!
Forward edges Backward edges
March 29, 2019 CSCI211 - Sprenkle 13

Applying Residual Graph

Used to find the maximum flow

» Use similar idea to greedy algorithm

Residual path: simple s-t path in G

» Also known as augmenting path

March 29, 2019 CSCI211 - Sprenkle 14

3/29/19

Augmenting Path Algorithm c=capacity

Ford-Fulkerson(G, s, t, c):
foreach e ¢ E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P

f = Augment(f, c, P) # change the flow
update Gr # build a new residual graph
return f

Augment(f, c, P):
b = bottleneck(P) # edge on P with least capacity
foreach e ¢ P

if (e € E) f(e) = f(e) + b # forward edge, N flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
March 29, 2019 CSCI211 - Sprenkle 15

Ford-Fulkerson Algorithm
2 2 4 \ / flow
G] 0 capacity
fo/zo\ g 60 10 ~
/ 0 l 0\ 0
s 10 3 9 5 10 t
Flow value = 0
March 29, 2019 CSCI211 - Sprenkle 16

Ford-Fulkerson Algorithm

0
2 4 2 / flow
G 0 / \ o] \0 /capacity
60 10

0 \
0 t

9 5 |

Flow value = 0

What does the residual graph look like?

March 29, 2019 CSCI211 - Sprenkle 17

Ford-Fulkerson Algorithm

2 2 4 / flow
G 0 / \ 6]\0 /capacity
10 2 0 8 60 10
/o l O\ 6
s 10 3 9 5 10 t

Flow value = 0

G{Z

S 3) t

March 29, 2019 CSCI211 - Sprenkle 18

3/29/19

Ford-Fulkerson Algorithm

0

10 20\;;
/° l g\

2

2 flow
] \ 0 // capacity
60

10

0
5 10 t

Flow value = 0

Bottleneck
/
A 4 2 residual capacity
Ge] /
10 2 G 6 10 \
s 10 3 9 5) 10 ('t
March 29, 2019 CSCI211 - Sprenkle 19

Ford-Fulkerson Algorithm

March 29, 2019 CSCI211 - Sprenkle 20

3/29/19

Ford-Fulkerson Algorithm

2 4 4)
G /1\
/ ° : 8 \@ IO
s) 10 13 7) 5)t 10
March 29, 2019 CSCI211 - Sprenkle 21

Ford-Fulkerson Algorithm

8
10 8
% 8 I %(a\ |o\
10 3 9 5 10 t
Flow value = 16
N S
10 @ 8 6 4 \
/4 3 \!
~ T~ 0 :

March 29, 2019 CSCI211 - Sprenkle 22

3/29/19

Ford-Fulkerson Algorithm

10 20 10
® 9 l N IO\
10 3 5 10 t

March 29, 2019 CSCI211 - Sprenkle 23

Ford-Fulkerson Algorithm

3

N

10

0N\

5 10 t

Flow value = 19

' NS
2 N
—

March 29, 2019 CSCI211 - Spr How do we know we're done?

3/29/19

Ford-Fulkerson Algorithm

0N

10 — ™t

Cut capacity = 19 Flow value = 19

PR NN

10 t

What is reachable from s
March 29, 2019 CSCI211 - Sprenkle 25

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)
foreach e €e E f(e) = @ # initially no flow
G = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, AN flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f

March 23, 2014 What is the r'unning time? Need more analysis ...

Why does alg work? What is happening at each iteration?

3/29/19

MINIMUM CUTS

March 29, 2019 CSCI211 - Sprenkle 27

Cuts

An s-t cut is a partition (A, B) of V with s € A and
teB

The capacity of a cut (A, B) is c4.8) = 3 de)

eout of 4

What is the capacity | 9 > s

of this cut? e
\l 10
> 6 |0\At
|‘5 0 /
\l%pacity=9+ 15+ 8+ 30

30 > 7 =62
March 29, 2019 CSCI211 - Sprenkle 28

3/29/19

Minimum Cut Problem

Find an s-t cut of minimum capacity

Puts upperbound on maximum flow

Same graph,

different cut [’ T \
|o/l\ 15

Capacity = 10 +8 + 10
=28

March 29, 2019 CSCI211 - Sprenkle 29

Recall

The value of a flow fis v(f) = 3. out of s f(€)

0
2 9 5
4 /|\ o I\o
10 44 15 15 0 10
iy/ 0 l 4 \l 4 \
s 5 3 8 6 10 t
\ I\ 0 I 0 /
capacity = |5 40 6 150 10
flow = 0 l) \l/
- 30 z Value = 4
March 29, 2019 CSCI211 - Sprenkle 30

3/29/19

Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = foU{(A) — fi"(A).

What is the value E{A(e) - _2]2(6) = v(f)
e out o e1n to
of this flow? 6
2 9 5 B
/ \ 0 \ 6
15 15 0 10

March 29, 2019 CSCI211 - Sprenkle 31

Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = foU{(A) — f"(A).
Sf@ = 31 = uf)

6

2 9 > 5 B
/[\ 0 \e
%o 15 0 10
/ l 8\1 8\
3 8 6 10 t
\] | ‘ m/
4 0 6 15 0
\l I lAe 6+0+8 I+ 11
4 30 > 7
March 29, 2019 CSCI211 - Sprenkle 32

3/29/19

Flow Value Lemma (FVL)

Let f be any flow, and let (A, B) be any s-t cut.
Then v(f) =, ou of (€)= 3¢ in 10 af(€)

Pf.
— . by flow conservation,
v(f) . outZ:of s f(e) By definition all terms except v =s are 0
= X 0+ (S f0- T fe) e—
e out of s veA#s e out of v e into v
= X flo- X flg+ X (X flog= > fle)
e out of s e into s vEA#s e out of v e into v
= 20 X fleg= > [fle)
veA e out of v e into v A B
= X flg= X [fle @
e out of A e in to A
Possibilities for edge e:
* Both ends in A (0)
March 29,2019 ° Points out from A (+), Points in tQA (-) O

Weak Duality

Let f be any flow and let (A, B) be any s-t cut.

Then the value of the flow is at most the
cut’s capacity

Cut capacity =30 = Flow value < 30

|o\
10 t
10 /
/ Capacity = 30

March 29, 2019 CSCI211 - Sprenkle 34

3/29/19

Weak Duality

Let f be any flow. Then, for any s-t cut (A, B)
v(f) < cap(A, B).

Pf.
ByFVL v(f) = 3 fle)- 3 f(e) A B
eout of A einto A
()' — 8

= 2 [l
e out of A

< > c(e)
eoutof A

= cap(A,B)

March 29, 2019 CSCI211 - Sprenkle 35

Certificate of Optimality

Corollary. Let f be any flow, and

let (A, B) be any cut. If v(f) = cap(A, B),

then fis a max flow and (A, B) is a min cut.
Value of flow = 28

9 Cut capacity =28 =
2 9 5 Flow value <28
'0/ \ | \ ’
10 40 15 15 0 10 B
/4 l 8 \l 9 \
s 5 B 8 > 6 10 t
\ [\ 4 10
A s 40 6 15 0 0
|4\l 14 \l/
4 30 7
March 29, 2019 - . _ - 36

3/29/19

3/29/19

Recall: Residual Graph G;

Original edge:e=(u,v) € E capacit

» Flow f(e), capacity c(e)
6 «—flow

Residual edge

» e = (u, v) w/ capacity c(e) - f(e)

residual capacity

» eR = (v, u) with capacity f(e) ; | 2

To undo flow ~
Residual graph: G;=(V, E;) ™ residual capacity

» Residual edges with positive residual capacity
> E={e:f(e) <c(e)} L {e?:f(e)>0}
| J | J

I

1
Forward edges Backward edges
March 29, 2019 CSCI211 - Sprenkle 37

Recall: Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)
foreach e ¢ E f(e) = @ # initially no flow
G = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P

if (e € E) f(e) = f(e) + b # forward edge, AN flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
March 29, 2019 CSCI211 - Sprenkle 38

Intuition Behind Correctness of
F-F Algorithm

Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

By definition of A, s € A

By definition of the F-F algorithm’s resulting
flow, t ¢ A

March 29, 2019 CSCI211 - Sprenkle 39

Fo rd-Fu | ke I'SO » What do we know about the flow out of A?
* What do we know about the flow into A?

2 4 4
G |0/ \7 1\9
10 20 8 66 10
/9 l 9\ |o\
A 10 3 9 > 5 10 t

Cut capacity = 19 Flow value = 19

G{Z

4
10 2 7 6 |
A:nodes reachabté from s l l \
3 5

s |

March 29, 2019 CSCI211 - Sprenkle 40

3/29/19

20

Fo rd-Fu | ke 'SO » What do we know about the flow out of A?
* What do we know about the flow into A?

G: 10
10

9

A 10
Cut capacity = 19

* All edges out of A are completely saturated
* All edges into A are completely unused

e NN

March 29, 2019 CSCI211 - Sprenkle 41

Max-Flow Min-Cut Theorem

Flow fis a max flow iff there are no augmenting paths.

The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

See formal proof in book
March 29, 2019 CSCI211 - Sprenkle 42

3/29/19

21

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)

foreach e €e E f(e) = @ # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gr # build a new residual graph

return f

Augment(f, c, P)

b = bottleneck(P) # edge on P with least capacity
foreach e € P

if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e®d = f(e) - b # forward edge, ¥ flow
return f
March 29, 2019 CSCI211 - Sprenkle 43

Analyzing Augmenting Path Algorithm

O(m)
O(m)

Ford-Fulkerson(G, s, t, ¢)

foreach e €e E f(e) = @ # initially no flow
G = residual graph

Find [path: O(m); lterations: O(F) iterations, where F = max flow

O(m)
O(m)

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Total: O(Fm) ||

Augment(f, c, P)

o) b = bottleneck(P) # edge on P with least capacity
O(m) foreach e € P
a(l) if (e € E) f(e) = f(e) + b # forward edge, AN flow
(1) else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Total: O(n) = O(m), since n £ 2m
March 29, 2019 CSCI211 - Sprenkle 44

3/29/19

22

Running Time

Assumption. All capacities are integers between 1 and F.

Invariant. Every flow value f(e) and every residual capacity’s
cs(e) remains an integer throughout algorithm.

Theorem. Algorithm terminates in at most v(f*) < nF iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If F =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there

exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.

March 29, 2019 CSCI211 - Sprenkle 45

Looking Ahead

PS 9 (last one!) due Friday
See course schedule page for starter code

Wiki due Monday — Network flows focus

March 29, 2019 CSCI211 - Sprenkle 46

3/29/19

23

