Objectives

Network Flow

Max flow
Min cut
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Motivating Flow Network Problems

Modeling transportation networks
Edges: carry traffic
Nodes: pass traffic between edges
Can represent many different types of problems

Instead of looking at all possibilities, formulate as a
flow problem
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Flow Network

G = (V, E) = directed graph, no parallel edges
Two distinguished nodes: s = source, t = sink
c(e) = capacity of edge e, >0
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Flows: Definitions

Flow can’t exceed
capacity

An s-t flow is a function that satisfies 2
Capacity condition: For each e € E: 0 < f(e) < c(e)
Conservation condition: For eachv € V —{s, t}:
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Flows: Definitions

The value of a flow fis v(f) = 3. outof s f(€)
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capacity = |5
flow = 0 \4/ 0 \/g/
4 30 7 Value = 4
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Maximum Flow Problem

Make network most efficient

» Use most of available capacity

Goal: Find s-t flow of maximum value

capacity = |5
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Towards a Max Flow Algorithm

Greedy algorithm
» Start all edgese e Eatf(e)=0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck
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2
March 29, 2019 CSCI211 - Sprenkle

Towards a Max Flow Algorithm

Greedy algorithm
» Start alledgese € Eatf(e)=0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck
1

20 X \ 0 Is this optimal?

20 10
s\ 30 20 t
10 20
0 \ X 20 Flow value = 20
2)
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Towards a Max Flow Algorithm

Greedy algorithm
Start all edgese € Eatf(e) =0
Find an s-t path P with the most capacity: f(e) < c(e)
Augment flow along path P
Repeat until you get stuck

locally optimality does not = global optimality

1 1

20/ \o zo/ \|o
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greedy =20 10 20 10 20
o\ /20 |o\ /20 opt = 30
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Towards a solution...

RESIDUAL GRAPHS
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Towards a Residual Graph
Original edge: e=(u,v) € E  capacity
> Flow f(e), capacity c(e) ! 7 -
6 «—flow
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Towards a Residual Graph
Original edge: e=(u,v) € E j capacity
u 17 v

» Flow f(e), capacity c(e)
6 «—flow

Residual edge

» e =(u, v) w/ capacity c(e) - f(e)

residual capacity
> eR = (V, u) with capacity f(E) 1 I v

To undo flow ~N  —

N residual capacity
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Residual Graph: G;

Original edge:e=(u,v) € E  capacit

» Flow f(e), capacity c(e)
6 «—flow

Residual edge
» e = (u, v) w/ capacity c(e) - f(e) sl capacity
» eR = (v, u) with capacity f(e) ; | 2
To undo flow ~ —
Residual graph: G¢=(V, Ey)  resdal capacy
» Residual edges with positive residual capacity
> E; = Ee . f(e) < c(e)}' U l{eR : f(e) > O}'

1

!
Forward edges Backward edges
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Applying Residual Graph

Used to find the maximum flow

» Use similar idea to greedy algorithm

Residual path: simple s-t path in G

» Also known as augmenting path
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Augmenting Path Algorithm c=capacity

Ford-Fulkerson(G, s, t, c):
foreach e ¢ E f(e) = 0 # initially no flow
Gf = residual graph

while there exists augmenting path P

f = Augment(f, c, P) # change the flow
update Gr # build a new residual graph
return f

Augment(f, c, P):
b = bottleneck(P) # edge on P with least capacity
foreach e ¢ P

if (e € E) f(e) = f(e) + b # forward edge, N flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
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Ford-Fulkerson Algorithm
2 2 4 \ / flow
G ] 0 capacity
fo/zo\ g 60 10 ~
/ 0 l 0\ 0
s 10 3 9 5 10 t
Flow value = 0
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Ford-Fulkerson Algorithm

0
2 4 2 / flow
G 0 / \ o ] \0 /capacity
60 10

0 \
0 t

9 5 |

Flow value = 0

What does the residual graph look like?
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

2 4 4 )
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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® 9 l N IO\
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

0N

10 — ™t

Cut capacity = 19 Flow value = 19

PR NN

10 t

What is reachable from s
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)
foreach e €e E f(e) = @ # initially no flow
G = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, AN flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f

March 23, 2014 What is the r'unning time? Need more analysis ...

Why does alg work? What is happening at each iteration?
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MINIMUM CUTS
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Cuts

An s-t cut is a partition (A, B) of V with s € A and
teB

The capacity of a cut (A, B) is c4.8) = 3 de)

eout of 4

What is the capacity | 9 > s

of this cut? e
\l 10
> 6 |0\At
|‘5 0 /
\l%pacity=9+ 15+ 8+ 30

30 > 7 =62
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Minimum Cut Problem

Find an s-t cut of minimum capacity

Puts upperbound on maximum flow

Same graph,

different cut [ ’ T \
|o/l\ 15

Capacity = 10 +8 + 10
=28
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Recall

The value of a flow fis v(f) = 3. out of s f(€)

0
2 9 5
4 /|\ o I\o
10 44 15 15 0 10
iy/ 0 l 4 \l 4 \
s 5 3 8 6 10 t
\ I\ 0 I 0 /
capacity = |5 40 6 150 10
flow = 0 l ) \l/
- 30 z Value = 4
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Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = foU{(A) — fi"(A).

What is the value E{A(e) - _2]2(6) = v(f)
e out o e1n to
of this flow? 6
2 9 5 B
/ \ 0 \ 6
15 15 0 10
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Flow Value Lemma

Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = foU{(A) — f"(A).
Sf@ = 31 = uf)

6

2 9 > 5 B
/[\ 0 \e
%o 15 0 10
/ l 8\1 8\
3 8 6 10 t
\ ] | ‘ m/
4 0 6 15 0
\l I lAe 6+0+8 I+ 11
4 30 > 7
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Flow Value Lemma (FVL)

Let f be any flow, and let (A, B) be any s-t cut.
Then v(f) =, ou of (€)= 3¢ in 10 af(€)

Pf.
— . by flow conservation,
v(f) . outZ:of s f(e) By definition all terms except v =s are 0
= X 0+ (S f0- T fe) e—
e out of s veA#s e out of v e into v
= X flo- X flg+ X (X flog= > fle)
e out of s e into s vEA#s e out of v e into v
= 20 X fleg= > [fle)
veA e out of v e into v A B
= X flg= X [fle @
e out of A e in to A
Possibilities for edge e:
* Both ends in A (0)
March 29,2019 ° Points out from A (+), Points in tQA (-) O

Weak Duality

Let f be any flow and let (A, B) be any s-t cut.

Then the value of the flow is at most the
cut’s capacity

Cut capacity =30 = Flow value < 30

|o\
10 t
10 /
/ Capacity = 30
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Weak Duality

Let f be any flow. Then, for any s-t cut (A, B)
v(f) < cap(A, B).

Pf.
ByFVL  v(f) = 3 fle)- 3 f(e) A B
eout of A einto A
( )' — 8

= 2 [l
e out of A

< > c(e)
eoutof A

= cap(A,B)
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Certificate of Optimality

Corollary. Let f be any flow, and

let (A, B) be any cut. If v(f) = cap(A, B),

then fis a max flow and (A, B) is a min cut.
Value of flow = 28

9 Cut capacity =28 =
2 9 5 Flow value <28
'0/ \ | \ ’
10 40 15 15 0 10 B
/4 l 8 \l 9 \
s 5 B 8 > 6 10 t
\ [\ 4 10
A s 40 6 15 0 0
|4\l 14 \l/
4 30 7
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Recall: Residual Graph G;

Original edge:e=(u,v) € E  capacit

» Flow f(e), capacity c(e)
6 «—flow

Residual edge

» e = (u, v) w/ capacity c(e) - f(e)

residual capacity

» eR = (v, u) with capacity f(e) ; | 2

To undo flow ~
Residual graph: G;=(V, E;) ™ residual capacity

» Residual edges with positive residual capacity
> E={e:f(e) <c(e)} L {e?:f(e)>0}
| J | J

I

1
Forward edges Backward edges
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Recall: Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)
foreach e ¢ E f(e) = @ # initially no flow
G = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P

if (e € E) f(e) = f(e) + b # forward edge, AN flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
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Intuition Behind Correctness of
F-F Algorithm

Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

By definition of A, s € A

By definition of the F-F algorithm’s resulting
flow, t ¢ A
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Fo rd-Fu | ke I'SO » What do we know about the flow out of A?
* What do we know about the flow into A?

2 4 4
G |0/ \7 1\9
10 20 8 66 10
/9 l 9\ |o\
A 10 3 9 > 5 10 t

Cut capacity = 19 Flow value = 19

G{Z

4
10 2 7 6 |
A:nodes reachabté from s l l \
3 5

s |
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Fo rd-Fu | ke 'SO » What do we know about the flow out of A?
* What do we know about the flow into A?

G: 10
10

9

A 10
Cut capacity = 19

* All edges out of A are completely saturated
* All edges into A are completely unused

e NN
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Max-Flow Min-Cut Theorem

Flow fis a max flow iff there are no augmenting paths.

The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

See formal proof in book
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)

foreach e €e E f(e) = @ # initially no flow
Gf = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gr # build a new residual graph

return f

Augment(f, c, P)

b = bottleneck(P) # edge on P with least capacity
foreach e € P

if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e®d = f(e) - b # forward edge, ¥ flow
return f
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Analyzing Augmenting Path Algorithm

O(m)
O(m)

Ford-Fulkerson(G, s, t, ¢)

foreach e €e E f(e) = @ # initially no flow
G = residual graph

Find [path: O(m); lterations: O(F) iterations, where F = max flow

O(m)
O(m)

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gt # build a new residual graph

return f

Total: O(Fm) ||

Augment(f, c, P)

o) b = bottleneck(P) # edge on P with least capacity
O(m) foreach e € P
a(l) if (e € E) f(e) = f(e) + b # forward edge, AN flow
(1) else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Total: O(n) = O(m), since n £ 2m
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Running Time

Assumption. All capacities are integers between 1 and F.

Invariant. Every flow value f(e) and every residual capacity’s
cs(e) remains an integer throughout algorithm.

Theorem. Algorithm terminates in at most v(f*) < nF iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If F =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there

exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.
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Looking Ahead

PS 9 (last one!) due Friday
See course schedule page for starter code

Wiki due Monday — Network flows focus
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