Objectives

Network Flow
Circulation
Application: Survey Design
Application: Airline Scheduling
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Review

What is a flow network?
What is our usual goal given a flow network?

What is the Ford-Fulkerson algorithm?
What is its purpose?
Why does it work?

What is the min-cut?

How does it relate to the max flow?
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Review: Network Flows

An s-t flow is a function that satisfies
Capacity condition: For each e € E: 0 < f(e) < c(e)
Conservation condition: For eachv € V —{s, t}: deintoy f(€)
= Ze out of y f(e)

The value of a flow fis v(f) = e outof s f(€)
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Review: Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any
cut. If v(f) = cap(A, B), then fis a max flow and

(A, B) is a min cut.
Value of flow = 28
Cut capacity =28 =

9 Flow value < 28
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Review: Ford- * What do we know about the flow out of A?
* What do we know about the flow into A?
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Cut capacity = 19 * All edges out of A are completely saturated
* All edges into A are completely unused

Flow value = 19
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Max-Flow Min-Cut Theorem

Flow fis a max flow iff there are no augmenting paths.

The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

See formal proof in book
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Analyzing Augmenting Path Algorithm

return f

>h
Ford-Fulkerson(G, s, t, ©) Gl
foreach e €e E f(e) = @ # initially no flow
Gf = residual graph
while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gr # build a new residual graph

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e®d = f(e) - b # forward edge, ¥ flow
return f
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)

O(m) foreach e €e E f(e) = @ # initially no flow
Om)  Gf = residual graph

Find [path: O(m); lterations: O(F) iterations, where F = max flow

while there exists augmenting path P

O(m) f = Augment(f, c, P) # change the flow
o(m) update Gt # build a new residual graph
return f
Total: O(Fm) ||

Augment(f, c, P)

o) b = bottleneck(P) # edge on P with least capacity
O(m) foreach e € P
a(l) if (e € E) f(e) = f(e) + b # forward edge, AN flow
(1) else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Total: O(n) = O(m), since n £ 2m
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Running Time

Assumption. All capacities are integers between 1 and F.

Invariant. Every flow value f(e) and every residual capacity’s
c(e) remains an integer throughout algorithm.

Theorem. Algorithm terminates in at most v(f*) < nF iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If F =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there

exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.
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Power of Max Flow Problem

Some problems with non-trivial combinatorial searches

can be formulated as max flow or
min cut in a directed graph
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BIPARTITE MATCHING
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Bipartite Matching v

Input: undirected, bipartite graph G=(LUR, E)

Edges: oneendin L, one end in R
Matching M c E such that each node appears in at most 1
edge in M.

Problem: find matching of largest possible size

. <,
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Bipartite Matching

\'%

Input: undirected, bipartite graph G=(LUR, E)

Edges: oneendin L, one end in R

Matching M c E such that each node appears in at most 1

edge in M.

Problem: find matching of largest possible size

. >
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matching
1-2,3-1',4-5'

Can we do better?

R
13

Bipartite Matching

\

Input: undirected, bipartite graph G=(LUR, E)

Edges: oneendin L, one end in R

Matching M c E such that each node appears in at most 1

edge in M.
o
2/
e
L o
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max matching

1-1', 2-2',3-3, 5-5’
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Max Flow Formulation

Create digraph G' = (LURU {s, t}, E')

Direct all edges from L to R, and assign unit capacity

Add source s and unit capacity edges from s to each node in L
Add sink t and unit capacity edges from each nodeinRto t
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Max Flow Formulation

Create digraph G' = (LURU {s, t}, E')

Direct all edges from L to R, and assign unit capacity

Add source s and unit capacity edges from s to each node in L
Add sink t and unit capacity edges from each nodeinRto t

model? 1 \/<
&
Why does

5 R this work?

What is C
in this model? L

What is cost of 1 T Given model,
generating \ now what?
(2]
(3]
(4]
o
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value
of max flow in G'.

Proof: Need to show in both directions

N
2N

-7 \%
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max
flow in G'.

Pf. >

Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k paths.
fis a flow and has cardinality k. =

1 /‘;%'Zl\ :
‘ //\\

=
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G
Pf. &
Let f be a max flow in G' of value k.
Integrality theorem = ks integral and can assume f is 0-1.
Consider M = set of edges from L to R with f(e) =1
each node in Land R participates in at most one edge in M
[M] =k: considercut (LUs,RuUt) =

™\

=
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Network Flow Solutions

Model problem as a flow network
Describe what nodes, edges, and capacity represent

Describe what flow represents and how that maps to
your solution

Run Ford-Fulkerson algorithm

Prove that the solution found is
correct/feasible/optimal

Prove that you find all solutions
Analyze running time

Creating model
FF algorithm
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Section 7.7

EXTENSIONS TO MAX FLOW
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Circulation with Demands

Directed graph G = (V, E)
Edge capacitiesc(e), e € E
Node supply and demands d(v),v e V

7

* d(v) > 0 > demand
* d(v) <0 - supply
* d(v) =0 - transshipment
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Example Graph:
Circulation with Demands

8 .6+ supply
\ 6 | /
4 / | 7 7 ] 7
10 6 6 42 9
7 / ] l | \
3 — 4——0) 1
4N\
0 0 1 €apaCity  yemand
flow

* d(v) > 0 = demand
* d(v) <0 - supply
* d(v) = 0 = transshipment
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Circulation with Demands

Circulation with demands
» Directed graph G = (V, E)
» Edge capacitiesc(e), e € E
» Node supply and demands d(v), v e V
Def. A circulation is a function that satisfies:
» Foreache € E: 0<f(e) <c(e) (capacity)
» Foreachv eV: 2/~ 3/ = d0) (conservation)
Circulation problem:
given (V, E, ¢, d), does a circulation exist?

(Can we satisfy demand with supply?)
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Example Graph:
Circulation with Demands

8 -6 < supply
\ 6 | /
4 / | 7 7 l 7
10 6 6 42 9
-7 / 3 l | \
3 — 4 ———— I
4N
0 0 1 €apaCty o mand
flow
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Circulation with Demands

Necessary condition:

sum of supplies = sum of demands
Sd(vy= Y -d(v) == D

vid(v)>0 vid(v)< 0

Sum of supplies? Demands?

8 -6 +— supply
\ 6 | /
7 7 I 7
6

«
'7/; fAFZ 49\ .

10 0 4 \Ca i©
T PaAY " demand
flow
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Circulation with Demands:
Towards Max Flow Formulation

Ideas about how we can formulate this as a max flow problem?

G: 8 -6 +— supply
6 |
4/|\7 7/1\7
[ 66

'7/ ; l/&fz 9\

4N
10 0 T capacity demand

flow
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Circulation with Demands:
Max Flow Formulation

Add new source s and sink t
For each v with d(v) < 0, add edge (s, v) with capacity -d(v)
For each v with d(v) > 0, add edge (v, t) with capacity d(v)
Claim: G has circulation iff G' has max flow of value D
Il ed
//_ AN Ieai/?:\l;rstaer?daenete%ie:g t
/8 6{‘\ supply
G"
/{ \ 7 7 / T \
10 6/& . 9
/ 3 | 4 \
\ AO/ I /<§
IO\ demand
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Circulation with Demands: Characterization

Given (V, E, ¢, d), there does not exist a
circulation iff there exists a node partition
(A, B) such that

>, d, > cap(A, B)

e

demand by exceeds  SUPPly of nodes in B +
nodes in B max capacity of edges going from A > B
Proof?

What can we use to prove this?
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Circulation with Demands: Characterization

Given (V, E, ¢, d), there does not exist a
circulation iff there exists a node partition
(A, B) such that

2,cpd, >cap(A, B)

e

demand by exceeds  SUPPly of nodes in B +
nodes in B max capacity of edges going from A > B

Pfidea. Look at min cutin G'.
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ANOTHER EXTENSION: LOWER
BOUNDS
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Circulation with Demands and

Lower Bounds Force flow to use
Feasible circulation certain edges
» Directed graph G = (V, E)
» Edge capacities c(e) and lower bounds 7 (e), e € E

» Node supply and demands d(v), v e V

Def. A circulation is a function that satisfies:
» Foreache e E:0< /7 (e) <f(e) < c(e) (capacity)
» Foreachv e Vv: 2/~ X/ =dv  (conservation)

Circulation problem with lower bounds.
Given (W E, /, ¢, d), does a circulation exist?
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Circulation with Demands and
Lower Bounds

Model lower bounds with demands
» Send /(e) units of flow along edge e
» Update demands of both endpoints

lower upper capacity

bound |} |} bound }
\ [2,9] —w v 7 ——{w
d(v) G d(w) d(v) +2 G d(w) - 2
How we’ll represent Supply and demand decrease

lower bounds

Proof in book
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7.8 SURVEY DESIGN
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Survey Design

Design survey asking consumers about products

Can only survey a consumer about a product if
they own it
Consumer can own multiple products

Ask consumer i between ¢; and ¢ questions
Ask between p; and p;’ consumers about product
J

Goal: Design a survey that meets these specs, if possible.

How can we model this problem?
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Model: Bipartite Graph

Nodes: customers and products

Edge between customer and product means
customer owns product

For each customer, range of # of products asked
about

For each product, range of # of customers asked
about it

What does the flow represent?
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Survey Design Algorithm

Formulate as a circulation problem with lower
bounds

Include an edge (i, j) if customer i owns product j

[0, =]
What do these /
edges mean? /ﬂ [0, 1]

[c1,al] [P, pi]

consumers
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Alternative bounds on t—=>s?

Su rvey DESign Algorlt How do we know if we can

create a survey!

Formulate as a circulation What is the survey?
bounds How many solutions are there
Include an edge (i, j) if cust to this problem?
# of [0, 0]
Overa\\ /

s aske

stion .
que ation)

(Flow conserY

[, e [P, pi']

No cap on
total number
of questions

Range of # of Range of # of
products customers
asked about m/ asked
1: customer
consumers -
asked question
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Survey Solution

If a feasible, integer flow solution, can create the
survey

Customer i will be surveyed about product j iff
the edge (i,j) carries a unit of flow
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Survey Solution - Analysis

How do we know that the solution found is
correct/feasible/optimal?

How do we know that we found all solutions?
Analyze run time

Creating model
FF algorithm
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Looking Ahead

Problem Set 9 — due Friday
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