Objectives

Wrap up: Implementing a PQ
Data structure: Graphs

Jan 27,2016 CSCI211 - Sprenkle 1

Review

What is a priority queue?
What is a heap?

» Properties

» Implementation

What is the process for finding the smallest
element in a heap?

What is the process for adding to a heap?

Jan 27,2016 €SCI211 - Sprenkle 2

Review: Heap Defined

Combines benefits of sorted array and list
Balanced binary tree

* Each node has at most 2 children

* Node value is its key

D) Heap order: each node’s key is

é at least as large as its parent’s
L

D)

\ R
@@@é@&

Note: not a binary search tree

Jan 27,2016 €SCI211 - Sprenkle 3

Review: Implementing a Heap

Option 1: Use pointers
» Each node keeps
Element it stores (key)
3 pointers: 2 children, parent
Option 2: No pointers
» Requires knowing upper bound on n

» For node at position i
left child is at 2i
right child is at 2i+1

(Ll b e
a ——i

Jan 27, 2016 C€SCI211 - Sprenkle 4

Review: Implementing a Heap

Finding the minimal element
» First element
»0(1)

Jan 27,2016 CSCI211 - Sprenkle 5

Implementing a Heap: Operations

Adding an element?
» Could add element to last position
What are possible scenarios?

Jan 25, 2016 Sprenkle - CSCI211 6

1727716

Implementing a Heap: Operations

Adding an element?

» Could add element to last position
What are possible scenarios?
» Heap is no longer balanced
» Something that is almost a heap but a little off
> Need Heapify-up procedure to fix our heap

Jan 25, 2016

Sprenkle - CSCI211

Practice: Heapify-Up

Jan 25, 2016 Sprenkle - CSCI211

Heapify-Up

Heap Position where node added

Heapify-up(H, 157
if 1 > 1 then
j=parent(i)=floor(i/2)
if key[H[i]] < key[H[j]] then

swap array entries H[i] and H[j]
Heapify-up(H, j)

Why does this algorithm work?
What is the intuition?

Jan 27,2016

€SCI211 - Sprenkle

Practice: Heapify-Up

Swap with ||

Jan 25, 2016 Sprenkle - CSCI211

Practice: Heapify-Up

Swap with 5

Jan 25,2016 Sprenkle - CSCI211

Heapify-Up

Claim. Assuming array H is almost a heap with
key of H[1] too small, Heapify-Up fixes the
heap property in O(log i) time

» Can insert a new element in a heap of n elements in
O(log n) time

Jan 25, 2016 Sprenkle - CSCI211

Heapify-Up

Claim. Assuming array H is almost a heap with
key of H[1] too small, Heapify-Up fixes the
heap property in O(log i) time
» Can insert a new element in a heap of n elements in
O(log n) time
Proof. By induction
»Ifi=1 ..

Jan 25, 2016 Sprenkle - CSCI211 13

Heapify-Up

Claim. Assuming array H is almost a heap with

key of H[1] too small, Heapify-Up fixes the

heap property in O(log i) time

» Can insert a new element in a heap of n elements in
O(log n) time

Proof. By induction

» Ifi=1, is already a heap = 0O(1)

»Ifi>1, ..

Jan 25, 2016 Sprenkle - CSCI211 14

Heapify-Up

Claim. Assuming array H is almost a heap with
key of H[1] too small, Heapify-Up fixes the
heap property in O(log i) time
» Can insert a new element in a heap of n elements in
O(log n) time
Proof. By induction
~ If i=1, is already a heap = O(1)
#1fi>1,
Swaps are O(1)
Swaps continue up to root (max) = logi

Jan 27,2016 €SCI211 - Sprenkle 15

Deleting an Element

Delete at
position 3

Jan 27, 2016 C€SCI211 - Sprenkle 16

Deleting an Element

Delete at position i
Removing an element:
» Messes up heap order
» Leaves a “hole” in the heap
Not as straightforward as Heapify-Up
Algorithm
1. Fill'in element where hole was
Patch hole: move nt" element into it" spot
2. Adjust heap to be in order
At position i because moved nt" item up to

Jan 27,2016 CSCI211 - Sprenkle 17

Deleting an Element

Delete at
position 3

Example of OK:
16 I'l deleted, replaced by 16

Two “bad” possibilities: element w is

> Too small: violation is between it and parent >
Heapify-Up

> Too big: with one or both children > Heapify-Down
(example: w becomes 12)

Jan 27,2016 €SCI211 - Sprenkle 18

1727716

Deleting an Element

Example where new key is too small

Delete 9
Replace with 5
But 5 <6, so need to Heapify-Up

Jan 27,2016 CSCI211 - Sprenkle

Heapify-Down

Heapify-down(H, i):
n = length(H)
if 2i > n then Why can we stop?
Terminate with H unchanged
else if 2i < n then
left=2i and right=2i+1
j be index that minimizes
key[H[left]] and key[[H[right]]
else if 2i = n then
j=2i

if key[H[j1] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

Jan 27,2016 CSCI211 - Sprenkle

Heapify-Down

Heapify-down(H, i):
n = length(H)
if 21 > n then i is a leaf — nowhere to go
Terminate with H unchanged
else if 21 < n then
left=2i and right=2i+1
j be index that minimizes
key[H[left]] and key[[H[right]]
else if 21 = n then
j=21i

if key[H[j1] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

Jan 27,2016 €SCI211 - Sprenkle

Practice: Heapify-Down

Moved 21 to where
element was removed

Jan 27, 2016 C€SCI211 - Sprenkle

Practice: Heapify-Down

Jan 27,2016 CSCI211 - Sprenkle

Practice: Heapify-Down

Jan 27,2016 €SCI211 - Sprenkle

1727716

Runtime of Heapify-Down?

Heapify-down(H, i):
= length(H)
if 21 > n then
Terminate with H unchanged
else if 21 < n then
left=21i and right=2i+1
j be index that minimizes O(1)
key[H[left]] and key[[H[right]]
else if 21 = n then
j=21i

if key[H[J1] < key[H[i]] then
swap array entries H[i] and H[j] O(1)
Heapify-down(H, j)

Num swaps: O(log n)

Jan 27,2016 €SCI211 - Sprenkle 25

Implementing Priority Queues
with Heaps

Creates an empty heap that can
StartHeap(N) hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it
5 Deletes element in heap at
Delete(i) e ?
position i
Identifies and deletes an element

ExtractMin() with minimum key from heap

Jan 27,2016 CSCI211 - Sprenkle 26

Implementing Priority Queues

with Heaps

St SISO o
Insert(v) Inserts item v into heap O(log n)
St o

Delete(i) Esltie:iisr:lement in heap at 0(log n)
orrsany S sssen ndene opeg

Jan 27,2016 CsCi211 - Sprenkle 2

Putting It All Together...

Add elements into PQ with the number’s value
as its priority

Then extract the smallest number until done
Come out in sorted order

What is the running time of sorting numbers
using a PQ implemented with a heap?

O(n log n)

Jan 27,2016 €SCI211 - Sprenkle 28

Comparing Data Structures

“ Sorted LISt
List

Start(N) 0o(1)
Insert(v) O(l) O(n)
FindMin() 0(1) 0(1)
Delete(i) O(n) 0(1)
ExtractMin() O(n) 0(1)
Jan 27, 2016 C€SCI211 - Sprenkle 29

Comparing Data Structures

Operation Unsorted Sorted List
List
0o(1)

Start(N) O(N) 0(1)

Insert(v) O(log n) 0o(1) 0O(n)
FindMin() 0(1) 0o(1) 0(1)
Delete(i) O(log n) O(n) 0(1)
ExtractMin() O(log n) O(n) 0o(1)

1727716

Not covered in class, but in book

Additional Heap Operations

Access elements in PQ by “name”
& Priority
Value 3542 5143 8712 1264 9123 5954 === Process id

» Maintain additional array Position that stores
current position of each element in heap

Operations:
» Delete(Position[v])
Does not increase overall running time
» ChangeKey(v, a)
Changes key of element v to a
Identify position of element v in array (Position array)
Change key, heapify

Jan 27,2016 CSCI211 - Sprenkle 31

Looking Ahead

Problem Set 2 due Friday

Office Hours: Meeting from 3-4 tomorrow

» Still available from 2:30-3, 4-4:30 (another meeting
at 4:30)

» Email me about additional times

Jan 27,2016 €SCI211 - Sprenkle 32

1727716

