Objectives
Greedy Algorithms: Interval Scheduling

€SCI211 - Sprenkle

Feb 15, 2016

Review: Greedy Algorithms

Need a proof to show that the algorithm finds an
optimal solution

A counter example shows that a greedy
algorithm does not provide an optimal solution

Feb 15,2016 €SCI211 - Sprenkle

Interval Scheduling

Job j starts at s; and finishes at f;
Two jobs are compatible if they don't overlap
Goal: find maximum subset of mutually compatible
jobs
! « Every job is worth equal
b money.

* To earn the most money >
schedule the most jobs

g

] Time
2 3 4 5 6 7 8 9 10 "

0

2/15/16

Review

What is a greedy algorithm?

Feb 15, 2016 €SCI211 - Sprenkle

Greedy algorithm stays ahead

INTERVAL SCHEDULING

Feb 15, 2016 C€SCI211 - Sprenkle

€5C1211 - Sprenkle

Feb 15, 2016

Greedy Algorithm Template

Consider jobs (or whatever) in some order

» Decision: What order is best?
Take each job provided it’s compatible with the
ones already taken

‘ What are options for orders? (rhetorical for now) ‘

What is our goal?
What are we trying to minimize/maximize?

What is the worst case?

€5CI211 - Sprenkle

Feb 15, 2016

Greedy Algorithm Pseudo-Code

In some specified order
Set Gr‘eed_y (Set candida{

solution = new Set();
while candidate.isNotEmpty()
next = candidate.select() //use selection criteria,
//remove from candidate and return value
if solution.isFeasible(next) //constraints satisfied
solution.union(next)
if solution.solves()
return solution

//No more candidates and no solution
return null

Feb 15, 2016 CSCI211 - Sprenkle 7

Greedy Algorithm Template

Consider jobs (or whatever) in some order

» Decision: What order is best?
Take each job provided it’s compatible with the
ones already taken

‘ What are options for orders? (rhetorical for now) ‘

What is our goal?
What are we trying to minimize/maximize?

What is the worst case?

Feb 15, 2016 €SCI211 - Sprenkle 8

Interval Scheduling

Earliest start time. Consider jobs in ascending order of
start time s,

» Utilize CPU as soon as possible
Earliest finish time. Consider jobs in ascending order of
finish time f;

» Resource becomes free ASAP

» Maximize time left for other requests
Shortest interval. Consider jobs in ascending order of
interval length f,—s,

Fewest conflicts. For each job, count the number of
conflicting jobs c;. Schedule in ascending order of
conflicts ¢;

Can we “break” any of these?
Feb 15, 2016 cscl 1-e., prove they’re not optimal? |

Counterexamples to Optimality of
Various Job Orders

Not optimal when ...

. . . .
breaks earliest start time

— breaks shortest length

I i
breaks fewest conflicts

]

]

Feb 15,2016 C€SCI211 - Sprenkle 10

Interval Scheduling: Greedy Algorithm

Consider jobs in increasing order of finish time

Take each job provided it’s compatible with the ones
already taken

jobs Sort jobs by finish times so that f; < f, < ... = f,
selected

6= {3

for j =1ton

if job j compatible with G
G=0G6uU {j}

return G

Feb 15, 2016 €SCI211 - Sprenkle 1

Interval Scheduling

B |
E
5 |
] Time
0 | 2 3 4 5 6 7 8 9 10]
0 | 2 3 4 5 6 7 8 9 10]
Feb 15, 2016 C€SCI211 - Sprenkle 12

2/15/16

Interval Scheduling

- :

Interval Scheduling

|
=

H Time
[I 2 3 4 5 [3 7 8 9 10 1
B
0 I 2 3 4 5 6 7 8 9 10 1l
Feb 15, 2016 €SCI211 - Sprenkle 13
Interval Scheduling
B |
)
P E
s
H Time
[I 2 3 4 5 6 7 8 9 10 1
CT =
0 I 2 3 4 5 6 7 8 9 10 1l
Feb 15, 2016 €SCI211 - Sprenkle 15
Interval Scheduling
B |
P E
5
H Time
0 I 2 3 4 5 6 7 8 9 10 A
0 4 5 6 7 8 9 10 1
Feb 15, 2016 C€SCI211 - Sprenkle 17

Time
0 | 2 3 4 5 6 7 8 9 10]
B
0 | 2 3 4 5 6 7 8 9 10 A
Feb 15, 2016 CSCI211 - Sprenkle 14
Interval Scheduling
B |
) =
5
H Time
0 | 2 3 4 5 6 7 8 9 10 1]
B E
0 | 2 3 4 5 6 7 8 9 10 A
Feb 15, 2016 CSCI211 - Sprenkle 16
Interval Scheduling
B |
P E
)
5
H Time
0 | 2 3 4 5 6 7 8 9 10]
R B -
0 | 2 3 4 5 6 7 8 9 10 A
Feb 15, 2016 C€SCI211 - Sprenkle 18

2/15/16

Interval Scheduling

B

IH
m
e

Time
o I 2 3 4 5 6 7 8 9 10 Il
B E] | ¢
o I 2 3 4 5 6 7 8 9 10 Il
Feb 15, 2016 €SCI211 - Sprenkle 19

Interval Scheduling

B

I_
m
e

-] Time

o 1 2 3 4 5 6 7 8 9 10 Il
B E [T H
o 1 2 3 4 5 6 7 8 9 10 I
Feb 15, 2016 €SCI211 - Sprenkle 20

Interval Scheduling: Greedy Algorithm

Consider jobs in increasing order of finish time

Take each job provided it's compatible with the
ones already taken

jobs Sort jobs by finish times so that f; < f, = ... < f,
selected
= G6={}
for j =1ton
if job j compatible with G
G=0G6uU {3}
return G
Runtime of algorithm?
* Where/what are the costs?
Feb 15,2016 €SCI211 - Sprenkle 21

Interval Scheduling: Greedy Algorithm

Consider jobs in increasing order of finish time.
Take each job provided it’s compatible with the
ones already taken. O(n logn)

jobs Sort jobs by finish times so that f; < f, < ... < f,
selected
3

NG =

for j=1ton

if job j compatible with G O(1) O(n)
G=0G6uU {j}

return G
Implementation. O(n log n)
» Remember job j* that was added last to A
» Job j is compatible with A if s, = f*

Feb 15,2016 C€SCI211 - Sprenkle 22

Analyzing Interval Scheduling
Know that the intervals are compatible

» Handled by the if statement

But is it optimal?
» What does it mean to be optimal?
» Recall our goal for maximization

Feb 15, 2016 CSCI211 - Sprenkle 23

Greedy Stays Ahead Proofs

Define your solutions
» Describe the form of your greedy solution (A) and of some other solution
(possibly the optimal solution, O)
Find a measure
» Find a measure by which greedy stays ahead of the optimal solution
Ex: Letay, ..., a be the first k measures of greedy algorithmand o, , ..., o,
be the first m measures of other solution (sometimes m = k)
Prove greedy stays ahead
» Show that greedy’s partial solutions constructed are always just as good
as the optimal solution’s initial segments based on the measure
Ex: for all indices r < min(k,m), prove by induction thata, 2 0, or a, < o,
» Use the greedy algorithm to help you argue the inductive step
Prove optimality
» Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal

Feb 15,2016 -> Make sure maps back to measure of optimality 2

2/15/16

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal, i.e., schedules the most
jobs possible

Pf. (by contradiction)
» Assume greedy is not optimal
» Leta,, a,, ..., a denote set of jobs selected by greedy (k jobs)
» Leto,, 0,, ..., 0, denote set of jobs in optimal solution (m jobs)
» Both sets ordered by finish time for comparison ordering
= Want to show that k =m

Greedy: | | | | | |
orr: | | | | | |
‘ What can we say about a, and o,? ‘ f(a;) < f(o))
Feb 15, 2016 CSCI211 - Sprenkle 25

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible
Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a,) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s
» Induction hypothesis: for all indices r <=k, f(a,) <= f(o,)

Prove for r+1

Greedy: | | | | | |

orr: | | | | | |

Feb 15, 2016 CSCI211 - Sprenkle 26

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible
Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a,) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s

> Induction hypothesis: for all indices r <=k, f(a,) <= f(o,)
Job a,,, finishes after o,
i i

il

Greedy: | | | | |

ort: | | | | |

How Greedy stays ahead

why not replace job a,, with job o, ?
Feb 15, 2016

€SCI211 - Sprenkle 27

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible
Pf. (by contradiction)
» Assume Greedy is not optimal (i.e., m > k)
Optimal solution has more jobs than Greedy
» We already showed that for all indices r <k, f(a,) < f(o,)
» Since m >k, there is a request o, ,; in Optimal

. . Why wouldn't
! ! Greedy have o,,,?
Greeay: | | | D | } Y O
1 1
1 1
orr | | el - N
Feb 15, 2016

CSCI211 - Sprenkle 28

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible
Pf. (by contradiction)
Assume Greedy is not optimal (i.e., m > k)
» We already showed that for all indices r <k, f(i,) < f(j,)
» Since m >k, there is a request o, in Optimal
Starts after o, ends = after a, ends
So, Greedy could also add o,
Contradiction because now Greedy has another job

A’

Y

¥ 1 Why wouldn't
1

Greedy: | | | | | | |] Greedy have o,,,?
i

orr. [| | e .. I

[o |
1

CSCI211 - Sprenkle 29

Greedy Algorithm Pseudo-Code

In some specified order
Set Greedy (Set candida{

solution = new Set();
while candidate.isNotEmpty()
next = candidate.select() //use selection criteria,
//remove from candidate and return value
if solution.isFeasible(next) //constraints satisfied
solution.union(next)
if solution.solves()
return solution

//No more candidates and no solution
return null

Feb 15, 2016 €SCI211 - Sprenkle 30

2/15/16

Problem Assumptions

All requests were known to scheduling algorithm

» Online algorithms: make decisions without
knowledge of future input

Each job was worth the same amount

» What if jobs had different values?
E.g., scaled with size

Single resource requested ;

» Rejected requests that didn’t fit

Feb 15, 2016 CSCI211 - Sprenkle 31

INTERVAL PARTITIONING

Feb 15, 2016 €SCI211 - Sprenkle 32

Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Ex: 10 lectures in 4 classrooms @
use fewe "°°ms{.

i
< d g
b | h
I] 5
5 sm 10 % 0w 7 nw 1 1w 2 2w 3 w4 4
Time
Feb 15,2016 €SCI211 - Sprenkle 33

Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Alternative schedule uses only 3 classrooms

3 || d f i
b g i
B | e [h
5 s 10 1630 1 N30 1z 1230 1 @m0 2 2 3 30 4 4%
Time
Feb 15,2016 CSCI211 - Sprenkle 34

Interval Partitioning:
Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the
maximum number that contain any given time.

Key observation. # of classrooms needed = depth.
a, b, 0~

, ¢ all contain 9:3
Ex: Depth of schedule below =3 = schedule
below is optimal.

Does there always exist a schedule equal
to depth of intervals?

< | d f i
b g i

A | e |

9 930 10 1030 I 1130 12 1230 | 130 2 230 3 330 4 430 _
Time

Feb 15, 2016 CSCI211 - Sprenkle 35

Interval Partitioning Discussion

Does there always exist a schedule equal to depth of
intervals?
Can we make decisions locally to get a global
optimum?
» Or are there long-range obstacles that require more
resources?

Feb 15, 2016 €SCI211 - Sprenkle 36

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start
time: assign lecture to any compatible classroom

Sort intervals by starting time so that s; s s, = ... s s,
= <+—— number of allocated classrooms
for j=1ton
if lecture j is compatible with some classroom k
schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1

d=d+1
Analyze algorithm

Feb 15, 2016 €SCI211 - Sprenkle 37

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time: assign
lecture to any compatible classroom

Sort intervals by starting time so that s; <s; = ... = s,
= <—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
:chegule lecture j in classroom d + 1
=d+1

Implementation: O(n log n)

» For each classroom k, maintain the finish time of the last job added.

» Keep the classrooms in a priority queue by last job finish time.

Feb 15, 2016 €SCI211 - Sprenkle 38

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition
» When do we add more classrooms?
» When would we add the d+1 classroom?

Feb 15,2016 €SCI211 - Sprenkle 39

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom
Theorem. Greedy algorithm is optimal

Pf.

» Let d = number of classrooms that the greedy algorithm
allocates

» Classroom d is opened because we needed to schedule a
job, say j, that is incompatible with all d-1 other
classrooms

» Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than S;

» Thus, we have d lectures overlapping at time s; + ¢
» dis the depth of the set of lectures

Feb 15,2016 C€SCI211 - Sprenkle 40

Assignments

Journal for tonight
Problem Set 4 for Friday

Feb 15, 2016 CSCI211 - Sprenkle 41

2/15/16

