Objectives

Greedy Algorithms
» Interval partitioning
» Minimizing Lateness

Exchange argument

Feb 17,2016 CSCI211 - Sprenkle

Review

What is the template for a greedy solution?

What problem did we solve optimally with a
greedy algorithm?
How did we prove optimality?

Feb 17,2016 €SCI211 - Sprenkle 2

Review: Greedy Algorithms

Template
1. Consider jobs (or whatever) in some order
Decision: What order is best?
2. Take each job provided it's compatible with the
ones already taken
At each step, take as much as you can get
» Feasible — satisfy problem’s constraints

» Locally optimal — best local choice among available
feasible choices

» Irrevocable — after decided, no going back

Feb 17,2016 €SCI211 - Sprenkle

Review: Interval Scheduling

Job j starts at 5; and finishes at f;
Two jobs are compatible if they don't overlap

Goal: find maximum subset of mutually compatible
jobs

Interval Scheduling

B |
E
—
H Time
0 I 2 3 4 5 6 7 8 9 10 A
0 I 2 3 4 5 6 7 8 9 10 A
Feb 17,2016 C€SCI211 - Sprenkle

a
e * Every job is worth equal
money.
c * To earn the most money >
q schedule the most jobs
e
f
€
b Time

o 1 2 3 4 5 6 7 8 9 1o 1

Feb 17,2016 C5C1211 - Sprenkle 4
Interval Scheduling

- 5]

2
s
H Time
o 1 2 3 4 5 6 7 8 9 10 1l
B
0 | 2 3 4 5 6 7 8 9 10 [l
Feb 17,2016 CSCI211 - Sprenkle 6

2/17/16

Interval Scheduling

Y

Interval Scheduling
B |
=) [

Time
[I 2 3 4 5 [3 7 8 9 10 1
B
0 I 2 3 4 5 6 7 8 9 10 1l
Feb 17,2016 €SCI211 - Sprenkle 7
Interval Scheduling
B |
) =
s
H Time
[I 2 3 4 5 6 7 8 9 10 1
B E
0 I 2 3 4 5 6 7 8 9 10 1l
Feb 17,2016 €SCI211 - Sprenkle 9
Interval Scheduling
B |
P E
)
5
H Time
0 I 2 3 4 5 6 7 8 9 10 A
R N (-
0 I 2 3 4 5 6 7 8 9 10 1

Feb 17,2016 CSCI211 - Sprenkle

] Time
0 | 2 3 4 5 6 7 8 9 10]
] B
0 | 2 3 4 5 6 7 8 9 10 A
Feb 17,2016 CSCI211 - Sprenkle 8
Interval Scheduling
B |
P E
7
s
H Time
0 | 2 3 4 5 6 7 8 9 10 1]
0 | 2 3 4 5 6 7 8 9 10 A
Feb 17, 2016 CSCI211 - Sprenkle 10
Interval Scheduling
B |
P E
=) T
] Time
0 | 2 3 4 5 6 7 8 9 10]
B e[[¢
0 | 2 3 4 5 6 7 8 9 10 A
Feb 17, 2016 €SCI211 - Sprenkle 12

2/17/16

Interval Scheduling

B

IH
m
e

=) H Time

o 1 2 3 4 5 6 7 8 9 10 Il
B E [T H
o 1 2 3 4 5 6 7 8 9 10 I
Feb 17,2016 €SCI211 - Sprenkle 13

Review: Greedy Stays Ahead Proofs

Define your solutions
» Describe the form of your greedy solution (A) and of some other solution
(possibly the optimal solution, O)
Find a measure
» Find a measure by which greedy stays ahead of the optimal solution
Ex: Leta,, ..., a, be the first k measures of greedy algorithmand o, . .
be the first m measures of other solution (sometimes m = k)
Prove greedy stays ahead
» Show that greedy’s partial solutions constructed are always just as good
as the optimal solution’s initial segments based on the measure
Ex: for all indices r < min(k,m), prove by induction thata, 2 0, or a, < o,
» Use the greedy algorithm to help you argue the inductive step
Prove optimality
> Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal

Feb 17,2016 CSCI211 - Sprenkle 14

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal, i.e., schedules the most
jobs possible
Pf. (by contradiction)

» Assume greedy is not optimal

» Leta,, a,, ..., a denote set of jobs selected by greedy (k jobs)

» Leto,, 0,, .., 0, denote set of jobs in optimal solution (m jobs)

» Both sets ordered by finish time for comparison ordering

= Want to show that k=m

Greedy: | | | | | |
orr: | | | | | |
‘ What can we say about a, and o,? ‘ f(a;) < f(o))
Feb 17,2016 €SCI211 - Sprenkle 15

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible

Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a;) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s
» Induction hypothesis: for all indices r <=k, f(a,) <= f(0,)

Prove for r+1

Greedy: | | | | | |

orr: | | | | | |

Feb 17,2016 C€SCI211 - Sprenkle 16

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible
Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a,) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s
> Induction hypothesis: for all indices r <=k, f(a,) <= f(o,)

Job a,,, finishes after o,
I i I
1 1
Greedy: | | | | | | | |
1 1
1 1
, '
ot | | | | | | !

How Greedy stays ahead why not replace job a,,, with job o, ,?
Feb 17,2016 CsCI211 - Sprenkle 17

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible
Pf. (by contradiction)
» Assume Greedy is not optimal (i.e., m > k)
Optimal solution has more jobs than Greedy
» We already showed that for all indices r <k, f(a,) < f(o,)
» Since m >k, there is a request o,,, in Optimal

| | Why wouldn't
! ! Greedy have o,,?
Greedy: | | | | | | | | “
1 1
1 1
orr: I | | om0

Feb 17,2016 CSCI211 - Sprenkle 18

2/17/16

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible

Pf. (by contradiction)
Assume Greedy is not optimal (i.e., m > k)
We already showed that for all indices r < k, f(i,) < f(j,)
» Since m >k, there is a request o, in Optimal

Starts after o, ends = after a, ends
> So, Greedy could also add o,

Contradiction because now Greedy has another job

I 1 Why wouldn't

Y

Y

Problem Assumptions

All requests were known to scheduling algorithm

» Online algorithms: make decisions without
knowledge of future input

Each job was worth the same amount
» What if jobs had different values?
E.g., scaled with size

Single resource requested 4:

» Rejected requests that didn’t fit

Feb 17,2016 €SCI211 - Sprenkle 20

Greedy: | | | | | | i Greedy have o,
1
1
orr. [| | mow o
1
Feb 17, 2016 CSCI211 - Sprenkle 19
INTERVAL PARTITIONING
Feb 17,2016 CSCI211 - Sprenkle 2

Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the

same time in the same room.
What

Ex: 10 lectures in 4 classrooms

e | i
<] d P
b | h
L=]] [
5w 1o 0% 1m0 1 w1 w2 2% 3 sm 4 4%
Time
Feb 17,2016 C€SCI211 - Sprenkle 22

Interval Partitioning

Lecture j starts at s, and finishes at fj

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Alternative schedule uses only 3 classrooms

9 930 10 1030 I 130 12 1230 | 130 2 230 3 330 4 430
Time
Feb 17,2016 CSCI211 - Sprenkle 23

Interval Partitioning:
Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the
maximum number that contain any given time.

Key observation. # of classrooms needed = depth.
a, b, ~—

, b, call contain 9:30

Ex: Depth of schedule below =3 = schedule
below is optimal.

Does there always exist a schedule equal
to depth of intervals?

9 930 10 1030 11 1130 12 1230 | 130 2 230 3 330 4 430
Time
Feb 17,2016 €SCI211 - Sprenkle 24

2/17/16

Interval Partitioning Discussion

Does there always exist a schedule equal to depth of
intervals?

Can we make decisions locally to get a global

optimum?
» Or are there long-range obstacles that require more
resources?
Feb 17,2016 €SCI211 - Sprenkle 25

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start
time: assign lecture to any compatible classroom

Sort intervals by starting time so that s; s s; s ... s s,
d= <+—— number of allocated classrooms
for j=1+ton
if lecture j is compatible with some classroom k
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1

d=d+1
Analyze algorithm

Feb 17,2016 €SCI211 - Sprenkle 26

2/17/16

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time: assign
lecture to any compatible classroom

Sort intervals by starting time so that s; = s, = ... s 5,
d= <+—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
Zchegule lecture j in classroom d + 1
=d+1

Implementation: O(n log n)
» For each classroom k, maintain the finish time of the last job added.
» Keep the classrooms in a priority queue by last job finish time.

Feb 17,2016 €SCI211 - Sprenkle 27

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition
» When do we add more classrooms?
» When would we add the d+1 classroom?

Feb 17,2016 C€SCI211 - Sprenkle 28

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf.

> Let d = number of classrooms that the greedy algorithm
allocates

» Classroom d is opened because we needed to schedule a
job, say j, that is incompatible with all d-1 other
classrooms

» Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than S;

» Thus, we have d lectures overlapping at time Si+e

» d is the depth of the set of lectures

Feb 17,2016 CSCI211 - Sprenkle 29

Exchange argument

SCHEDULING TO
MINIMIZE MAX LATENESS

Feb 17,2016 €SCI211 - Sprenkle 30

Scheduling to Minimizing Max Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at time d;
(its deadline)

If j starts at time s;, it finishes at time f, = 5, + ;

Lateness: (,=max {0, f-d}

Goal: schedule all jobs to minimize maximum lateness
L=max

nput: INENENENENER
3 2 1 4 3 2
Bl -5 s lateness =2 lateness = 0 lateness = 6
$=9 d=8 d,= 15 d=6 | dg= 14 d,=9
0 I 2 3 4 5 6 7 8 9 10 " 2 13 14 15
One schedule
Feb 17, 2016 csci211-spri Note: not a sum total 31

Greedy Algorithms

Greedy template.
Consider jobs in some order

What do we want to optimize?

What order?
» Intuition of order?
» Counter examples for order being optimal?

Feb 17,2016 €SCI211 - Sprenkle

2/17/16

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

» Shortest processing time first. Consider jobs in
ascending order of processing time t;.
[] 2]
Counter example 10
n 100 10

» Smallest slack. Consider jobs in ascending order of

slack d; - t,.
Counter example F
i
EH: o

Feb 17,2016 €SCI211 - Sprenkle 33

Minimizing Lateness: Greedy Algorithm

Earliest deadline first.

Sort n jobs by deadline so that d; s d; < .. = d,
for j=1ton
Assign job j to interval [t, t + t;]

sj =
fi=t+t
=t o+t
output intervals [s;, f;]
max lateness = |
4=6 4,=8 |d=9 4,=9 e =15

o 2 3 4 5 6 7 8 9 10 1 o3 1415

What can we say about this algorithm/its results? ‘

Feb 17,2016 C€SCI211 - Sprenkle

Looking Ahead

Problem Set 4 due Friday

Feb 17,2016 CSCI211 - Sprenkle 35

