

Review

- What is the template for a greedy solution?
- What problem did we solve optimally with a greedy algorithm?
How did we prove optimality?

Feb 17, 2016
CSCI211-Sprenkle 2

Review: Interval Scheduling

- Job j starts at s_{j} and finishes at f_{j}
- Two jobs are compatible if they don't overlap
- Goal: find maximum subset of mutually compatible jobs

Interval Scheduling

Interval Scheduling

Interval Scheduling

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal
> i.e., schedules the most jobs possible
- Pf. (by contradiction)
> Since we picked the first job to have the first finishing time, we know that $\mathrm{f}\left(\mathrm{a}_{\mathrm{l}}\right)<=\mathrm{f}\left(\mathrm{o}_{\mathrm{I}}\right)$
$>$ Want to show that Greedy "stays ahead"
- Each interval finishes at least as soon as Optimal's
$>$ Induction hypothesis: for all indices $r<=k, f\left(a_{r}\right)<=f\left(o_{r}\right)$
Prove for $r+1$

OPT:

Feb 17, 2016
CSCl211- Sprenkle 16

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal.
> i.e., schedules the most jobs possible
- Pf. (by contradiction)
$>$ Assume Greedy is not optimal (i.e., $m>k$)
- Optimal solution has more jobs than Greedy
$>$ We already showed that for all indices $r \leq k, f\left(a_{r}\right) \leq f\left(o_{r}\right)$
$>$ Since $m>k$, there is a request o_{k+1} in Optimal

Feb 17, 2016
CSCl211 - Sprenkle
$18 \quad 18$

INTERVAL PARTITIONING

Feb 17, 2016
CSC1211-Sprenkle
21

20

CSC1211-Sprenkle

Problem Assumptions

- All requests were known to scheduling algorithm
> Online algorithms: make decisions without knowledge of future input
- Each job was worth the same amount
$>$ What if jobs had different values?
- E.g., scaled with size
- Single resource requested
$>$ Rejected requests that didn't fit

Feb 17, 2016都

Interval Partitioning: Lower Bound on Optimal Solution

- Def. The depth of a set of open intervals is the maximum number that contain any given time.
- Key observation. \# of classrooms needed \geq depth.
- Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.

Interval Partitioning Discussion
- Does there always exist a schedule equal to depth of
intervals?
Can we make decisions locally to get a global
optimum?
$>$ Or are there long-range obstacles that require more
resources?
Feb 17,2016
cscl211-sprenke

Interval Partitioning: Greedy Algorithm

- Consider lectures in increasing order of start time: assign lecture to any compatible classroom

```
Sort intervals by starting time so that }\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots\leq\mp@subsup{s}{n}{
d =0 % number of allocated classrooms
for j = 1 to n
            j is compatible with some classroom k
            schedule lecture j in classroom k
        else
            chedule lecture j in classroom d + 
            d = d + 1
```


Analyze algorithm

Interval Partitioning: Greedy Analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom
- Theorem. Greedy algorithm is optimal
- Pf Intuition
$>$ When do we add more classrooms?
$>$ When would we add the $d+1$ classroom?

Interval Partitioning: Greedy Analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom
- Theorem. Greedy algorithm is optimal
- Pf.
$>$ Let $d=$ number of classrooms that the greedy algorithm allocates
$>$ Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms
$>$ Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}
$>$ Thus, we have d lectures overlapping at time $\mathrm{s}_{\mathrm{j}}+\varepsilon$
$>d$ is the depth of the set of lectures
Feb 17, 2016
CSC1211 - Sprenkle

Exchange argument
SCHEDULING TO
MINIMIZE MAX LATENESS

Greedy Algorithms
- Greedy template.
Consider jobs in some order
- What do we want to optimize?
- What order?
$>$ Intuition of order?
$>$ Counter examples for order being optimal?
reb17,2016

Feb 17, 2016
CSC1211-Sprenkle \qquad

Minimizing Lateness: Greedy Algorithms

- Greedy template. Consider jobs in some order.
$>$ Shortest processing time first. Consider jobs in ascending order of processing time t_{j}.

$>$ Smallest slack. Consider jobs in ascending order of slack $\mathrm{d}_{\mathrm{j}}-\mathrm{t}_{\mathrm{j}}$.

Looking Ahead

- Problem Set 4 due Friday

