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Objec&ves	
• Greedy	Algorithms	

Ø Interval	par&&oning	
Ø Minimizing	Lateness	

• Exchange	argument	
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Review	
• What	is	the	template	for	a	greedy	solu&on?	
• What	problem	did	we	solve	op&mally	with	a	
greedy	algorithm?	

• How	did	we	prove	op&mality?	
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Review:	Greedy	Algorithms	
• Template	

1.  Consider	jobs	(or	whatever)	in	some	order	
• Decision:	What	order	is	best?	

2.  Take	each	job	provided	it's	compa&ble	with	the	
ones	already	taken	

• At	each	step,	take	as	much	as	you	can	get	
Ø Feasible	–	sa&sfy	problem’s	constraints	
Ø Locally	op&mal	–	best	local	choice	among	available	
feasible	choices	

Ø Irrevocable	–	a[er	decided,	no	going	back	
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Review:	Interval	Scheduling	
•  Job	j	starts	at	sj	and	finishes	at	fj	
• Two	jobs	are	compa&ble	if	they	don't	overlap	
• Goal:	find	maximum	subset	of	mutually	compa&ble	
jobs	
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•  Every job is worth equal 
money.	

• To earn the most money à 
schedule the most jobs	

Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Interval	Scheduling	
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Review:	Greedy	Stays	Ahead	Proofs	
1.  Define	your	solu&ons	

Ø  Describe	the	form	of	your	greedy	solu&on	(A)	and	of	some	other	solu&on	
(possibly	the	op&mal	solu&on,	O)	

2.  Find	a	measure	
Ø  Find	a	measure	by	which	greedy	stays	ahead	of	the	op&mal	solu&on	

•  Ex:	Let	a1,	.	.	.	,	ak	be	the	first	k	measures	of	greedy	algorithm	and	o1	,	.	.	.	,	om	
be	the	first	m	measures	of	other	solu&on	(some&mes	m	=	k	)	

3.  Prove	greedy	stays	ahead	
Ø  Show	that	greedy’s	par&al	solu&ons	constructed	are	always	just	as	good	

as	the	op&mal	solu&on’s	ini&al	segments	based	on	the	measure		
•  Ex:	for	all	indices	r	≤	min(k,m),	prove	by	induc&on	that	ar	≥	or	or	ar	≤	or	

Ø  Use	the	greedy	algorithm	to	help	you	argue	the	induc&ve	step	
4.  Prove	op&mality	

Ø  Prove	that	since	greedy	stays	ahead	of	the	other	solu&on	with	respect	to	
the	measure,	then	the	greedy	solu&on	is	op&mal	
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Interval	Scheduling:	Analysis	
•  Theorem.		Greedy	algorithm	is	op&mal,	i.e.,	schedules	the	most	

jobs	possible	
•  Pf.		(by	contradic&on)	

Ø  Assume	greedy	is	not	op&mal	
Ø  Let	a1,	a2,	...,	ak	denote	set	of	jobs	selected	by	greedy	(k	jobs)	
Ø  Let	o1,	o2,	...,	om		denote	set	of	jobs	in	op*mal	solu&on	(m	jobs)	
Ø  Both	sets	ordered	by	finish	&me	for	comparison	ordering	
➨ Want	to	show	that	k	=	m	
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o1	 o2	 or	

a1	 a2	 ar	Greedy:	

OPT:	

What can we say about a1 and o1? 	 f(a1) ≤ f(o1)	

Interval	Scheduling:	Analysis	
•  Theorem.		Greedy	algorithm	is	op&mal	

Ø  i.e.,	schedules	the	most	jobs	possible	
•  Pf.		(by	contradic&on)	

Ø  Since	we	picked	the	first	job	to	have	the	first	finishing	&me,	we	
know	that	f(a1) <= f(o1)	

Ø Want	to	show	that	Greedy	“stays	ahead”	
•  Each	interval	finishes	at	least	as	soon	as	Op&mal’s	

Ø  Induc&on	hypothesis:	for	all	indices	r	<=	k,	f(ar) <= f(or)	
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o1	 o2	 or	

a1	 a2	 ar	Greedy:	

OPT:	

Prove for r+1	

Interval	Scheduling:	Analysis	
•  Theorem.		Greedy	algorithm	is	op&mal	

Ø  i.e.,	schedules	the	most	jobs	possible	
•  Pf.		(by	contradic&on)	

Ø  Since	we	picked	the	first	job	to	have	the	first	finishing	&me,	we	
know	that	f(a1) <= f(o1)	

Ø Want	to	show	that	Greedy	“stays	ahead”	
•  Each	interval	finishes	at	least	as	soon	as	Op&mal’s	

Ø  Induc&on	hypothesis:	for	all	indices	r	<=	k,	f(ar) <= f(or)	
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o1	 o2	 or	

a1	 a2	 ar	 ar+1	

. . .	

Greedy:	

OPT:	 or+1	

why not replace job ar+1 with job or+1?	

Job ar+1 finishes after or+1	

How Greedy stays ahead	
18 

Interval	Scheduling:	Analysis	
•  Theorem.		Greedy	algorithm	is	op&mal.	

Ø  i.e.,	schedules	the	most	jobs	possible	
•  Pf.		(by	contradic&on)	

Ø  Assume	Greedy	is	not	op&mal	(i.e.,	m	>	k)	
•  Op&mal	solu&on	has	more	jobs	than	Greedy	

Ø  We	already	showed	that	for	all	indices	r	≤	k,	f(ar)	≤	f(or)	
Ø  Since	m	>	k,	there	is	a	request	ok+1	in	Op&mal	
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ok+1	ok	

Why wouldn't 
Greedy have ok+1?	

o1	 o2	 or	

a1	 a2	 ar	 ak	Greedy:	

OPT:	
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Interval	Scheduling:	Analysis	
•  Theorem.		Greedy	algorithm	is	op&mal.	

Ø  i.e.,	schedules	the	most	jobs	possible	
•  Pf.		(by	contradic&on)	

Ø  Assume	Greedy	is	not	op&mal	(i.e.,	m	>	k)	
Ø  We	already	showed	that	for	all	indices	r	≤	k,	f(ir)	≤	f(jr)	
Ø  Since	m	>	k,	there	is	a	request	ok+1	in	Op&mal	

•  Starts	a[er	ok	ends	à	a[er	ak	ends	
Ø  So,	Greedy	could	also	add	ok	

•  Contradic&on	because	now	Greedy	has	another	job	
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ok+1	ok	

Why wouldn't 
Greedy have ok+1?	

o1	 o2	 or	

a1	 a2	 ar	 ak	Greedy:	

OPT:	

Problem	Assump&ons	
• All	requests	were	known	to	scheduling	algorithm	

Ø Online	algorithms:	make	decisions	without	
knowledge	of	future	input	

• Each	job	was	worth	the	same	amount	
Ø What	if	jobs	had	different	values?	

• E.g.,	scaled	with	size	
• Single	resource	requested	

Ø Rejected	requests	that	didn’t	fit	
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INTERVAL	PARTITIONING	
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Interval	Par&&oning	
• Lecture	j	starts	at	sj	and	finishes	at	fj	
• Goal:	find	minimum	number	of	classrooms	to	
schedule	all	lectures	so	that	no	two	occur	at	the	
same	&me	in	the	same	room.	

• Ex:	10	lectures	in	4	classrooms	
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Time	
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What are our constraints?	Can we use fewer rooms?	

Interval	Par&&oning	
• Lecture	j	starts	at	sj	and	finishes	at	fj	
• Goal:	find	minimum	number	of	classrooms	to	
schedule	all	lectures	so	that	no	two	occur	at	the	
same	&me	in	the	same	room.	

• Alterna&ve	schedule	uses	only	3	classrooms	
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Interval	Par&&oning:	
Lower	Bound	on	Op&mal	Solu&on	
• Def.		The	depth	of	a	set	of	open	intervals	is	the	
maximum	number	that	contain	any	given	&me.	

• Key	observa&on.		#	of	classrooms	needed		≥		depth.	
• Ex:		Depth	of	schedule	below	=	3		⇒		schedule	
below	is	op&mal.	
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Does there always exist a schedule equal 
to depth of intervals?	
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Interval	Par&&oning	Discussion	
• Does	there	always	exist	a	schedule	equal	to	depth	of	
intervals?	

• Can	we	make	decisions	locally	to	get	a	global	
op&mum?	
Ø Or	are	there	long-range	obstacles	that	require	more	
resources?		
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Interval	Par&&oning:	Greedy	Algorithm	
• Consider	lectures	in	increasing	order	of	start	
&me:	assign	lecture	to	any	compa&ble	classroom	
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Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if lecture j is compatible with some classroom k	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

number of allocated classrooms	

Analyze algorithm	

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if (lecture j is compatible with some classroom k)	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

Interval	Par&&oning:	Greedy	Algorithm	
•  Consider	lectures	in	increasing	order	of	start	&me:	assign	

lecture	to	any	compa&ble	classroom	

•  Implementa&on:	O(n	log	n)	
Ø  For	each	classroom	k,	maintain	the	finish	&me	of	the	last	job	added.	
Ø  Keep	the	classrooms	in	a	priority	queue	by	last	job	finish	&me.	
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number of allocated classrooms	

Interval	Par&&oning:	Greedy	Analysis	
•  Observa&on.	Greedy	algorithm	never	schedules		

two	incompa&ble	lectures	in	the	same	classroom	
•  Theorem.	Greedy	algorithm	is	op&mal	
•  Pf	Intui&on	

Ø When	do	we	add	more	classrooms?	
Ø When	would	we	add	the	d+1	classroom?	
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Interval	Par&&oning:	Greedy	Analysis	
• Observa&on.	Greedy	algorithm	never	schedules		
two	incompa&ble	lectures	in	the	same	classroom	

• Theorem.	Greedy	algorithm	is	op&mal	
• Pf.	

Ø Let	d	=	number	of	classrooms	that	the	greedy	algorithm	
allocates	

Ø Classroom	d	is	opened	because	we	needed	to	schedule	a	
job,	say	j,	that	is	incompa&ble	with	all	d-1	other	
classrooms	

Ø Since	we	sorted	by	start	&me,	all	these	incompa&bili&es	
are	caused	by	lectures	that	start	no	later	than	sj	

Ø Thus,	we	have	d	lectures	overlapping	at	&me	sj	+	ε	
Ø d	is	the	depth	of	the	set	of	lectures	
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SCHEDULING	TO		
MINIMIZE	MAX	LATENESS	

Exchange	argument	
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Scheduling	to	Minimizing	Max	Lateness	
•  Single	resource	processes	one	job	at	a	&me	
•  Job	j	requires	tj	units	of	processing	&me	and	is	due	at	&me	dj	

(its	deadline)	
•  If	j	starts	at	&me	sj,	it	finishes	at	&me	fj	=	sj	+	tj	
•  Lateness:		ℓj	=	max	{	0,		fj	-	dj	}	
•  Goal:	schedule	all	jobs	to	minimize	maximum	lateness		
L	=	max	ℓj	
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Input:	

One schedule	

Greedy	Algorithms	

• Greedy	template.		
Consider	jobs	in	some	order	

• What	do	we	want	to	op&mize?	
• What	order?	

Ø Intui&on	of	order?	
Ø Counter	examples	for	order	being	op&mal?		
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Minimizing	Lateness:	Greedy	Algorithms	

• Greedy	template.	Consider	jobs	in	some	order.		
Ø Shortest	processing	&me	first.	Consider	jobs	in	
ascending	order	of	processing	&me	tj.	

Ø Smallest	slack.		Consider	jobs	in	ascending	order	of	
slack	dj	-	tj.	
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Counter example	

Counter example	
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Minimizing	Lateness:	Greedy	Algorithm	
• Earliest	deadline	first.	
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0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

d5 = 14	d2 = 8	 d6 = 15	d1 = 6	 d4 = 9	d3 = 9	

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

What can we say about this algorithm/its results?	

Looking	Ahead	
• Problem	Set	4	due	Friday	

Feb	17,	2016	 CSCI211	-	Sprenkle	 35	


