Objectives

Greedy Algorithms
» Interval partitioning
» Minimizing Lateness

Exchange argument
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Review

What is the template for a greedy solution?

What problem did we solve optimally with a
greedy algorithm?
How did we prove optimality?
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Review: Greedy Algorithms

Template
1. Consider jobs (or whatever) in some order
Decision: What order is best?
2. Take each job provided it's compatible with the
ones already taken
At each step, take as much as you can get
» Feasible — satisfy problem’s constraints

» Locally optimal — best local choice among available
feasible choices

» Irrevocable — after decided, no going back
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Review: Interval Scheduling

Job j starts at 5; and finishes at f;
Two jobs are compatible if they don't overlap

Goal: find maximum subset of mutually compatible
jobs

Interval Scheduling
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a
e * Every job is worth equal
money.
c * To earn the most money >
q schedule the most jobs
e
f
€
b Time
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Interval Scheduling
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Interval Scheduling
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Interval Scheduling
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Interval Scheduling
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Review: Greedy Stays Ahead Proofs

Define your solutions
»  Describe the form of your greedy solution (A) and of some other solution
(possibly the optimal solution, O)
Find a measure
»  Find a measure by which greedy stays ahead of the optimal solution
Ex: Leta,, ..., a, be the first k measures of greedy algorithmand o, . .
be the first m measures of other solution (sometimes m = k)
Prove greedy stays ahead
»  Show that greedy’s partial solutions constructed are always just as good
as the optimal solution’s initial segments based on the measure
Ex: for all indices r < min(k,m), prove by induction thata, 2 0, or a, < o,
»  Use the greedy algorithm to help you argue the inductive step
Prove optimality
> Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal
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Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal, i.e., schedules the most
jobs possible
Pf. (by contradiction)

» Assume greedy is not optimal

» Leta,, a,, ..., a denote set of jobs selected by greedy (k jobs)

» Leto,, 0,, .., 0, denote set of jobs in optimal solution (m jobs)

» Both sets ordered by finish time for comparison ordering

= Want to show that k=m

Greedy: | | | | | |
orr: | | | | | |
‘ What can we say about a, and o,? ‘ f(a;) < f(o))
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Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible

Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a;) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s
» Induction hypothesis: for all indices r <=k, f(a,) <= f(0,)

Prove for r+1

Greedy: | | | | | |

orr: | | | | | |
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Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal
» i.e., schedules the most jobs possible
Pf. (by contradiction)

» Since we picked the first job to have the first finishing time, we
know that f(a,) <= f(o,)

» Want to show that Greedy “stays ahead”
Each interval finishes at least as soon as Optimal’s
> Induction hypothesis: for all indices r <=k, f(a,) <= f(o,)

Job a,,, finishes after o,
I i I
1 1
Greedy: | | | | | | | |
1 1
1 1
, '
ot | | | | | | !

How Greedy stays ahead why not replace job a,,, with job o, ,?
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Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible
Pf. (by contradiction)
» Assume Greedy is not optimal (i.e., m > k)
Optimal solution has more jobs than Greedy
» We already showed that for all indices r <k, f(a,) < f(o,)
» Since m >k, there is a request o,,, in Optimal

| | Why wouldn't
! ! Greedy have o,,?
Greedy: | | | | | | | | “
1 1
1 1
orr: I | | om0

Feb 17,2016 CSCI211 - Sprenkle 18

2/17/16



Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
» i.e., schedules the most jobs possible

Pf. (by contradiction)
Assume Greedy is not optimal (i.e., m > k)
We already showed that for all indices r < k, f(i,) < f(j,)
» Since m >k, there is a request o, in Optimal

Starts after o, ends = after a, ends
> So, Greedy could also add o,

Contradiction because now Greedy has another job

I 1 Why wouldn't

Y

Y

Problem Assumptions

All requests were known to scheduling algorithm

» Online algorithms: make decisions without
knowledge of future input

Each job was worth the same amount
» What if jobs had different values?
E.g., scaled with size

Single resource requested 4:

» Rejected requests that didn’t fit
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Greedy: | | | | | | i Greedy have o,
1
1
orr. [ | | mow o
1
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INTERVAL PARTITIONING
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Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the

same time in the same room.
What

Ex: 10 lectures in 4 classrooms
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Interval Partitioning

Lecture j starts at s, and finishes at fj

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Alternative schedule uses only 3 classrooms

9 930 10 1030 I 130 12 1230 | 130 2 230 3 330 4 430
Time
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Interval Partitioning:
Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the
maximum number that contain any given time.

Key observation. # of classrooms needed = depth.
a, b, ~—

, b, call contain 9:30

Ex: Depth of schedule below =3 = schedule
below is optimal.

Does there always exist a schedule equal
to depth of intervals?

9 930 10 1030 11 1130 12 1230 | 130 2 230 3 330 4 430
Time
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Interval Partitioning Discussion

Does there always exist a schedule equal to depth of
intervals?

Can we make decisions locally to get a global

optimum?
» Or are there long-range obstacles that require more
resources?
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Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start
time: assign lecture to any compatible classroom

Sort intervals by starting time so that s; s s; s ... s s,
d= <+—— number of allocated classrooms
for j=1+ton
if lecture j is compatible with some classroom k
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1

d=d+1
Analyze algorithm
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Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time: assign
lecture to any compatible classroom

Sort intervals by starting time so that s; = s, = ... s 5,
d= <+—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
Zchegule lecture j in classroom d + 1
=d+1

Implementation: O(n log n)
» For each classroom k, maintain the finish time of the last job added.
» Keep the classrooms in a priority queue by last job finish time.
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Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition
» When do we add more classrooms?
» When would we add the d+1 classroom?
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Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf.

> Let d = number of classrooms that the greedy algorithm
allocates

» Classroom d is opened because we needed to schedule a
job, say j, that is incompatible with all d-1 other
classrooms

» Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than S;

» Thus, we have d lectures overlapping at time Si+e

» d is the depth of the set of lectures
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Exchange argument

SCHEDULING TO
MINIMIZE MAX LATENESS
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Scheduling to Minimizing Max Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at time d;
(its deadline)

If j starts at time s;, it finishes at time f, = 5, + ;

Lateness: (,=max {0, f-d}

Goal: schedule all jobs to minimize maximum lateness
L=max

nput:  INENENENENER
3 2 1 4 3 2
Bl -5 s lateness =2 lateness = 0 lateness = 6
$=9  d=8 d,= 15 d=6 | dg= 14 d,=9
0 I 2 3 4 5 6 7 8 9 10 " 2 13 14 15
One schedule
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Greedy Algorithms

Greedy template.
Consider jobs in some order

What do we want to optimize?

What order?
» Intuition of order?
» Counter examples for order being optimal?
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Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

» Shortest processing time first. Consider jobs in
ascending order of processing time t;.
[ ] 2]
Counter example 10
n 100 10

» Smallest slack. Consider jobs in ascending order of

slack d; - t,.
Counter example F
i
EH: o
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Minimizing Lateness: Greedy Algorithm

Earliest deadline first.

Sort n jobs by deadline so that d; s d; < .. = d,
for j=1ton
Assign job j to interval [t, t + t;]

sj =
fi=t+t
=t o+t
output intervals [s;, f;]
max lateness = |
4=6 4,=8 |d=9 4,=9 e =15

o 2 3 4 5 6 7 8 9 10 1 o3 1415

What can we say about this algorithm/its results? ‘
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Looking Ahead

Problem Set 4 due Friday
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