
3/6/16	

1	

Objec&ves	
• Clustering	
• Encoding	

Mar	4,	2016	 1	CSCI211	-	Sprenkle	

Review	
• What	is	a	minimum	spanning	tree?	
• What	are	some	efficient	algorithms	to	find	an	
MST?	

• What	two	proper&es	did	we	prove	that	would	
helps	us	to	prove	that	these	algorithms	are	
correct?	

Mar	4,	2016	 CSCI211	-	Sprenkle	 2	

Review:	Minimum	Spanning	Tree	
• Spanning	tree:	spans	all	nodes	in	graph	
• Given	a	connected	graph	G	=	(V,	E)	with	posi&ve	
edge	weights	ce,	an	MST	is	a	subset	of	the	edges	
T	⊆	E	such	that	T	is	a	spanning	tree	whose	sum	
of	edge	weights	is	minimized	

Mar	4,	2016	 CSCI211	-	Sprenkle	 3	

 5	

23	

10 	

21	

 14	

24	

 16	

 6	

 4	

18	
9	

7	

11	
 8	

 5	

 6	

 4	

9	

7	

11	
 8	

G = (V, E)	 T, Σe∈T ce = 50	

Review:	Greedy	Algorithms	

•  Prim's	algorithm.		Start	with	some	root	node	s	and	greedily	grow	
a	tree	T	from	s	outward.		At	each	step,	add	the	cheapest	edge	e	
to	T	that	has	exactly	one	endpoint	in	T.	
Ø  Similar	to	Dijkstra’s	(but	simpler)	

•  Kruskal's	algorithm.		Start	with	T	=	φ.	Consider	edges	in	ascending	
order	of	cost.	Insert	edge	e	in	T	unless	doing	so	would	create	a	
cycle.	

•  Reverse-Delete	algorithm.		Start	with	T	=	E.		Consider	edges	in	
descending	order	of	cost.	Delete	edge	e	from	T	unless	doing	so	
would	disconnect	T.	

Mar	4,	2016	 CSCI211	-	Sprenkle	 4	

All three algorithms produce a MST	

Summary	of	What	Just	Proved	
• Simplifying	assump&on:	All	edge	costs	ce	are	dis&nct	
➜ 	MST	is	unique	

• Cut	property.		Let	S	be	any	subset	of	nodes,	and	let	e	
be	the	min	cost	edge	with	exactly	one	endpoint	in	S.		
Then	MST	contains	e.	

• Cycle	property.		Let	C	be	any	cycle,	and	let	f	be	the	
max	cost	edge	belonging	to	C.			
Then	MST	does	not	contain	f.	

Mar	4,	2016	 CSCI211	-	Sprenkle	 5	

f 	
C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

Kruskal’s	Algorithm	[1956]	
• Start	with	T	=	φ	
• Consider	edges	in	ascending	order	of	cost	
•  Insert	edge	e	in	T	unless	doing	so	would	create	a	
cycle	
Ø Add	edge	as	long	as	it	is	“compa&ble”	

Mar	4,	2016	 CSCI211	-	Sprenkle	 6	

How can we prove algorithm’s correctness?	

3/6/16	

2	

Kruskal's	Algorithm:	
Proof	of	Correctness	
•  Consider	edges	in	ascending	order	of	weight	
•  Case	1:		If	adding	e	to	T	creates	a	cycle,	discard	e	
according	to	cycle	property	(e	must	be	max	weight)	

•  Case	2:		Otherwise,	insert	e	=	(u,	v)	into	T	according	to	
cut	property	where	S	=	set	of	nodes	in	u's	connected	
component	

Mar	4,	2016	 CSCI211	-	Sprenkle	 7	Case 1	

v	

u	

Case 2	

e	

e	
S	

What is tricky about implementing
Kruskal’s algorithm?	 Implemen&ng	Kruskal’s	Algorithm	

Mar	4,	2016	 CSCI211	-	Sprenkle	 8	

What is tricky about implementing Kruskal’s algorithm?	

How do we know when adding an edge will create a cycle?	
• What are the properties of a graph/its nodes when

adding an edge will create a cycle?	

UNION-FIND		
DATA	STRUCTURE	

Mar	4,	2016	 CSCI211	-	Sprenkle	 9	

Union-Find	Data	Structure	
• Keeps	track	of	a	graph	as	edges	are	added	

Ø Cannot	handle	when	edges	are	deleted	
• Maintains	disjoint	sets	

Ø E.g.,	graph’s	connected	components	
• Opera&ons:	

Ø Find(u):	returns	name	of	set	containing	u	
• How	u&lized	to	see	if	two	nodes	are	in	the	same	set?	
• Goal	implementa&on:	O(log	n)	

Ø Union(A, B):	merge	sets	A	and	B	into	one	set	
• Goal	implementa&on:	O(log	n)	

Mar	4,	2016	 CSCI211	-	Sprenkle	 10	Best darn Union-Find Data Structure	

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

Implemen&ng	Kruskal's	Algorithm	
• Using	the	union-find	data	structure	

Ø Build	set	T	of	edges	in	the	MST	
Ø Maintain	set	for	each	connected	component	

Mar	4,	2016	 CSCI211	-	Sprenkle	 11	

are u and v in different connected components?	

merge two components	

Implementation?	

Implemen&ng	Kruskal's	Algorithm	
• Using	the	union-find	data	structure	

Ø Build	set	T	of	edges	in	the	MST	
Ø Maintain	set	for	each	connected	component	

Mar	4,	2016	 CSCI211	-	Sprenkle	 12	

Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (Find(u) != Find(v))	
 T = T ∪ {ei}	
 Union(Find(u), Find(v))	
return T	

are u and v in different connected components?	

merge two components	

Costs?	

3/6/16	

3	

Implemen&ng	Kruskal's	Algorithm	
• Using	best	implementa&on	of	union-find	

Ø Sor&ng:	O(m	log	n)	
Ø Union-find:	O(m	α	(m,	n))	
Ø O(m	log	n)	

Mar	4,	2016	 CSCI211	-	Sprenkle	 13	

m ≤ n2 ⇒ log m is O(log n)	

essentially a constant	

Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (Find(u) != Find(v))	
 T = T ∪ {ei}	
 Union(Find(u), Find(v))	
return T	

are u and v in different connected components?	

merge two components	

O(m logn)	

O(logn)	

O(logn)	

O(m)	 CLUSTERING	

Mar	4,	2016	 CSCI211	-	Sprenkle	 14	

Outbreak of cholera deaths in London in 1850s. �
Reference: Nina Mishra, HP Labs	

Intersections with
polluted wells	

Clustering	
• Given	a	set	U	of	n	objects	(or	points)	labeled		
p1,	…,	pn,	classify	into	coherent	groups	
Ø Problem:	Divide	objects	into	clusters	so	that	points	in	
different	clusters	are	far	apart	
• Requires	quan&fica&on	of	distance	

• Applica&ons	
Ø Rou&ng	in	mobile	ad	hoc	networks	
Ø Iden&fy	paoerns	in	gene	expression	
Ø Iden&fying	paoerns	in	web	applica&on	use	cases	

• Sets	of	URLs	
Ø Similarity	searching	in	medical	image	databases	

Mar	4,	2016	 CSCI211	-	Sprenkle	 15	

Clustering:	Distance	Func&on	
• Numeric	value	specifying	"closeness"	of	two	
objects	

• Assume	distance	func&on	sa&sfies	several	
natural	proper&es	
Ø d(pi,	pj)	=	0	iff	pi	=	pj			(iden&ty	of	indiscernibles)	
Ø d(pi,	pj)	≥	0 	 						(nonnega&vity)	
Ø d(pi,	pj)	=	d(pj,	pi) 						(symmetry)	

Mar	4,	2016	 CSCI211	-	Sprenkle	 16	

Our	Problem:		
k-Clustering	of	Maximum	Spacing	
• k-clustering.	Divide	objects	into	k	non-empty	
groups	

• Spacing.	Min	distance	between	any	pair	of	points	
in	different	clusters	

• k-clustering	of	maximum	spacing.			
Given	an	integer	k,	find	a	k-clustering	of	
maximum	spacing	

Mar	4,	2016	 CSCI211	-	Sprenkle	 17	

spacing	
k = 4	

Ideas about solving?	

Greedy	Clustering	Algorithm	
• Single-link	k-clustering	algorithm	

Ø Form	a	graph	on	the	vertex	set	U,	corresponding	to	n	
clusters	

Ø Find	the	closest	pair	of	objects	such	that	each	object	
is	in	a	different	cluster	and	add	an	edge	between	
them	

Ø Repeat	n-k	&mes	un&l	there	are	exactly	k	clusters	

Mar	4,	2016	 CSCI211	-	Sprenkle	 18	

How is this related to the MST?	

3/6/16	

4	

Greedy	Clustering	Algorithm	
• Key	observa&on.	Same	as	Kruskal's	algorithm	

Ø Except	we	stop	when	there	are	k	connected	
components	

• Remark.	Equivalent	to	finding	MST	and	dele&ng	
the	k-1	most	expensive	edges	

Mar	4,	2016	 CSCI211	-	Sprenkle	 19	

 5	

 6	

 4	

9	

7	

11	
 8	

 5	

 6	

 4	

7	
 8	

k=3	

MST	

Greedy	Clustering	Algorithm:	Analysis	
•  Theorem.	Let	C	denote	the	clustering	C1,	…,	Ck	formed	by	

dele&ng	the	k-1	most	expensive	edges	of	a	MST.			
C	is	a	k-clustering	of	max	spacing.	

•  Pf	Intui&on:	
Ø What	can	we	say	about	C’s	spacing?	

• Within	clusters	and	between	clusters	
Ø What	if	C	isn’t	op&mal?	

• What	does	that	mean	about	C’s	clusters	vs	(op&mal)	C*’s	
clusters?	

Mar	4,	2016	 CSCI211	-	Sprenkle	 20	

 5	

 6	

 4	

9	

7	

11	
 8	

 5	

 6	

 4	

7	
 8	

K=3	

MST	

Greedy	Clustering	Algorithm:	Analysis	
•  Theorem.		Let	C	denote	the	clustering	C1,	…,	Ck	formed	by	

dele&ng	the	k-1	most	expensive	edges	of	a	MST.	C	is	a	k-
clustering	of	maximum	spacing.	

•  Pf	Sketch.		Let	C*	denote	some	other	clustering	C*1,	…,	C*k.			
C*	and	C	must	be	different;	otherwise	we’re	done.	
Ø  The	spacing	of	C	is	length	d	of	(k-1)st	most	expensive	edge	
Ø  Let	pi,	pj	be	in	the	same	cluster	in	Greedy	solu&on	C	(say	Cr)	but	

different	clusters	in	other	solu&on	C*,	say	C*s	and	C*t	
Ø  Some	edge	(p,	q)	on	pi-pj	path	in	Cr	spans	two	different	clusters	in	

C*	

Mar	4,	2016	 CSCI211	-	Sprenkle	 21	

p	 q	pi	 pj	

C*s	 C*t	

Cr	
What do we know about (p, q)?	

Greedy	

Other
solution	

Greedy	Clustering	Algorithm:	Analysis	
•  Theorem.		Let	C	denote	the	clustering	C1,	…,	Ck	formed	by	

dele&ng	the	k-1	most	expensive	edges	of	a	MST.	C	is	a	k-
clustering	of	maximum	spacing.	

•  Pf.		Let	C*	denote	some	other	clustering	C*1,	…,	C*k.										
C*	and	C	must	be	different;	otherwise	we’re	done.	
Ø  The	spacing	of	C	is	length	d	of	(k-1)st	most	expensive	edge	
Ø  Let	pi,	pj	be	in	the	same	cluster	in	C	(say	Cr)	but	different	clusters	in	

C*,	say	C*s	and	C*t	
Ø  Some	edge	(p,	q)	on	pi-pj	path	in	Cr	spans	two	different	clusters	in	

C*	
Ø  All	edges	on	pi-pj	path	have	length	≤	d	

since	Kruskal	chose	them	
Ø  Spacing	of	C*	is	at	most	≤	d	since		
				p	and	q	are	in	different	clusters	

Mar	4,	2016	 CSCI211	-	Sprenkle	 22	

p	 q	pi	 pj	

C*s	 C*t	

Cr	

Greedy	

Other
solution	

IMPROVING	
TRANSMISSION	SPEEDS	

Mar	4,	2016	 CSCI211	-	Sprenkle	 23	

Which	Is	Beoer?	

Mar	4,	2016	 CSCI211	-	Sprenkle	 24	

Large
File	

Server	 Client	Internet	

Large
File	

Server	 Client	Internet	

Compressed	
File	

Large
File	

Large File	Compressed	
File	

OR	

3/6/16	

5	

Discussion:	Which	Is	Beoer?	
•  Depends	on	your	metrics,	compression	&me/amount	
•  Case	1	requires	

Ø More	network	resources	
Ø  Less	CPU	&me	(server:	compress;	client:	uncompress)	

•  Case	2	requires	
Ø  Less	network	resources	
Ø More	CPU	&me	(client	and	server)	

•  Overall	best	
Ø Depends	on	file	size,	network	speed,	compression	&me/

amount	
Ø  Bigger	files	à	Case	2	

Mar	4,	2016	 CSCI211	-	Sprenkle	 25	

Problem:	Encoding	
• Computers	use	bits:	0s	and	1s	
• Need	to	represent	what	we	(humans)	know	to	
what	computers	know	

Ø Map	symbol	à	unique	sequence	of	0s	and	1s	
Ø Process	is	called	encoding	

Mar	4,	2016	 CSCI211	-	Sprenkle	 26	

decimal, strings	 binary	 decimal, strings	

Problem:	Encoding	
• Let’s	say	we	want	to	encode	characters	using	0s	
and	1s	
Ø Lower	case	leoers	(26)	
Ø Space	
Ø Punctua&on	(, . ? ! ')	

Mar	4,	2016	 CSCI211	-	Sprenkle	 27	

What is the least number of bits we would
we need to encode these characters?	

Problem:	Encoding	Symbols	
• 32	characters	to	encode	

Ø log2(32)	=	5	bits	
Ø Can’t	use	fewer	bits	

• Examples:	
Ø a	à	00000	
Ø b	à	00001	

• Actual	mapping	from	character	to	encoding	
doesn’t	maoer	
Ø Easier	if	have	a	way	to	compare	…	
	

Mar	4,	2016	 CSCI211	-	Sprenkle	 28	

For	Long	Strings	of	Characters…	
• Do	we	need	an	average	of	5	bits/character	
always?	

• What	if	we	could	use	shorter	encodings	for	
frequently	used	characters,	like	a,	e,	s,	t?	

• A	fundamental	problem	for	data	compression	
Ø Represent	data	as	compactly	as	possible	

Mar	4,	2016	 CSCI211	-	Sprenkle	 29	

Goal: Optimal encoding that takes advantage
of nonuniformity of letter frequencies	

Example:	Morse	Code	
• Used	for	encoding	messages	over	telegraph	
• Example	of	variable-length	encoding	

Mar	4,	2016	 CSCI211	-	Sprenkle	 30	

How are letters encoded?	
How are letters differentiated?	

3/6/16	

6	

Example:	Morse	Code	
• Used	for	encoding	messages	over	telegraph	
• Example	of	variable-length	encoding	
• How	are	leoers	encoded?	

Ø Dots,	dashes	
Ø Most	frequent	leoers	use	shorter	sequences	

• e	à	dot;	t	à	dash;	a	à	dot-dash	

• How	are	leoers	differen&ated?	
Ø Spaces	in	between	leoers	

• Otherwise,	ambiguous	
• adds	one	more	character	to	each	leoer	

Mar	4,	2016	 CSCI211	-	Sprenkle	 31	

Ambiguity	in	Morse	Code	
• Encoding:	

Ø e	à	dot;	t	à	dash;	a	à	dot-dash	

• Example:	dot-dash-dot-dash	could	correspond	to	

Mar	4,	2016	 CSCI211	-	Sprenkle	 32	

Ambiguity	in	Morse	Code	
• Encoding:	

Ø e	à	dot;	t	à	dash;	a	à	dot-dash	

• Example:	dot-dash-dot-dash	could	correspond	to	
Ø etet	
Ø aa	
Ø eta	
Ø aet	

Mar	4,	2016	 CSCI211	-	Sprenkle	 33	

What’s the cause of the ambiguity?	

Problem	
• Ambiguity	caused	by	encoding	of	one	character	
being	a	prefix	of	encoding	of	another	

Mar	4,	2016	 CSCI211	-	Sprenkle	 34	

Prefix	Codes	
• Problem:	Encoding	of	one	character	being	a	
prefix	of	encoding	of	another	à	ambiguity	

• Solu&on:	Prefix	Codes:	map	leoers	to	bit	strings	
such	that	no	encoding	is	a	prefix	of	any	other	
Ø Won’t	need	ar&ficial	devices	like	spaces	to	separate	
characters	

• Example	encodings:	
Ø Verify	that	no	encoding	is	
				a	prefix	of	another	
Ø What	is	0010000011101?	

Mar	4,	2016	 CSCI211	-	Sprenkle	 35	

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Assignments	
• Wiki	due	Mon	night	

Ø 4.5-4.8	
• PS	6	due	next	Friday	in	class	

Mar	4,	2016	 CSCI211	-	Sprenkle	 36	

