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Objec&ves	
• Dynamic	Programming	

Ø Wrapping	up:	weighted	interval	schedule	
Ø Segmented	Least	Squares	
Ø Subset	Sums	
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Summary:	
Proper&es	of	Problems	for	DP	

• Polynomial	number	of	subproblems	
• Solu&on	to	original	problem	can	be	easily	
computed	from	solu&ons	to	subproblems	

• Natural	ordering	of	subproblems,	easy	to	
compute	recurrence	
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Review:	Weighted	Interval	Scheduling	
•  Job	j	starts	at	sj,	finishes	at	fj,	and	has	weight	or	value	vj			
•  Two	jobs	are	compa&ble	if	they	don't	overlap	
•  Goal:	find	maximum	weight	subset	of	mutually	
compa&ble	jobs	
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Weighted	Interval	Scheduling:	
Memoiza&on	Analysis	
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Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
   M[j] = empty
M[0] = 0

M-Compute-Opt(j):
   if M[j] is empty:
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]

M-Compute-Opt(n)

O(n log n)

O(n)

O(n log n)

O(n)

Weighted	Interval	Scheduling:	
Finding	a	Solu&on	
• Dynamic	programming	algorithms	compute	op#mal	
value	

• What	if	we	want	the	solu#on	itself		
(not	simply	the	value)?	

• Do	some	post-processing	

	

Mar	25,	2016	 CSCI211	-	Sprenkle	 5	

M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
   if j = 0:
      output nothing
   elif vj + M[p(j)] > M[j-1]:
      print j
      Find-Solution(p(j))
   else:
      Find-Solution(j-1)

Runtime?

O(n)

Turning	it	Around…	
•  We	solved	the	Fibonacci	problem	as	both	recursive/memoized	

and	an	itera+ve	algorithm	
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Input: n jobs (associated start time sj, finish time fj, and 
value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
   M[j] = empty
M[0] = 0

M-Compute-Opt(j):
   if M[j] is empty:
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
M-Compute-Opt(n)

Can we write this algorithm as an iterative solution?
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Towards	Itera&ve	Solu&on…	
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Itera&ve	Solu&on	
• Build	up	solu&on	from	subproblems	instead	of	
breaking	down	

	
• Typically,	we’ll	take	itera&ve	approach	
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n
    M[j] = max(vj + M[p(j)], M[j-1])

Runtime?

O(n)

Example:	Itera&vely	
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Example:	Itera&vely	
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 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	
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 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	
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Example:	Itera&vely	
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 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	
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 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	
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 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	
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And so on….

 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	
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Find the solution?

Review:	Weighted	Interval	Scheduling	
1.  Determine	op&mal	substructure	of	problem	

Ø  Define	the	recurrence	rela&on	
2.  Define	algorithm	to	find	the	value	of	op&mal	

solu&on	
3. Op&onally,	change	algorithm	to	an	itera#ve	

rather	than	recursive	solu&on	
4.  Define	algorithm	to	find	op#mal	solu#on	
5.  Analyze	running	&me	of	algorithms	
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Map to weighted-interval scheduling
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SEGMENTED	LEAST	SQUARES	
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Least	Squares	
• Founda&onal	problem	in	sta&s&c	and	numerical	
analysis	

• Given	n	points	in	the	plane:	(x1,	y1),	
	(x2,	y2)	,	.	.	.	,	(xn,	yn)	

• Find	a	line	y	=	ax	+	b	that	minimizes	the	sum	of	
the	squared	error	
Ø “line	of	best	fit”	
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i=1
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Least	Squares	
•  Founda&onal	problem	in	sta&s&c	and	numerical	analysis	
•  Given	n	points	in	the	plane:	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	
•  Find	a	line	y	=	ax	+	b	that	minimizes	the	sum	of	the	squared	

error	
Ø  “line	of	best	fit”	

	
•  Closed	form	solu&on.		Calculus		⇒		min	error		

is	achieved	when	
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Least	Squares	
• What	happens	to	the	error	if	we	try	to	fit	one	
line	to	these	points?	

	
• What	paiern	does	it	seem	like	these	points	
have?	
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x

y

Least	Squares	
• What	happens	to	the	error	if	we	try	to	fit	one	
line	to	these	points?	
Ø Large	error	

• Paiern:	More	like	3	lines	
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x

y

Segmented	Least	Squares	
• Points	lie	roughly	on	a	sequence	of	line	segments	
• Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,		
(xn,	yn)	with	x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	
segments	that	minimizes	f(x)	
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If I want the best fit, how many lines should I use?
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Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	line	segments	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	
minimizes	f(x)	
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x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to 
balance accuracy and parsimony?

Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	several	line	segments.	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	minimizes:	
Ø  E:	sum	of	the	sums	of	the	squared	errors	in	each	segment	
Ø  L:	the	number	of	lines	

•  Tradeoff	func+on:		E	+	c	L,	for	some	constant	c	>	0.	
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x

y

How should we define 
an optimal solution?

Segmented	Least	Squares	
• What	made	it	seem	like	the	points	were	in		
3	lines?		What	happened?	
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x

y

Segmented	Least	Squares	
• What	made	it	seem	like	the	points	were	in		
3	lines?		What	happened?	

• Error	increased	
• Looking	for	change	in	linear	approxima&on	

Ø Where	to	par&&on	points	into	line	segments	
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x

y

Recall:		
Proper&es	of	Problems	for	DP	
• Polynomial	number	of	subproblems	
• Solu&on	to	original	problem	can	be	easily	
computed	from	solu&ons	to	subproblems	

• Natural	ordering	of	subproblems,	easy	to	
compute	recurrence	
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We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

Toward	a	Solu&on	
• Consider	just	the	first	or	last	point	
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x

y

What do we know about those points?  
their segments?  cost of a segment?
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Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	
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x

y

Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	
Ø Solve	for	p1,	…,	pi-1	
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x

y

Next:  Formulate as a recurrence

Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• How	do	we	compute	OPT(j)?	
Ø Last	problem:	binary	decision	(include	job	or	not)	
Ø This	&me:	mul+way	decision	

• Which	op&on	do	we	choose?	
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Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• To	compute	OPT(j):	
Ø Last	segment	contains	points	pi,	pi+1,	…	,	pj	for	some	i	
Ø Cost	=	e(i,	j)	+	c	+	OPT(i-1).	

Mar	25,	2016	 CSCI211	-	Sprenkle	 34	

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 

Segmented	Least	Squares:	Algorithm	
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INPUT: n, p1,…,pN , c

Segmented-Least-Squares()
   M[0] = 0
   e[0][0] = 0  # needed?
   for j = 1 to n
      for i = 1 to j
         e[i][j] = least square error for the

  segment pi, …, pj

   for j = 1 to n
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])

   return M[n]

Costs?

Segmented	Least	Squares:	
	Algorithm	Analysis	

• Boileneck:	compu&ng	e(i,	j)	for	O(n2)	pairs,	O(n)	
per	pair	using	previous	formula	
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can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pN , c

Segmented-Least-Squares()
   M[0] = 0
   e[0][0] = 0
   for j = 1 to n
      for i = 1 to j
         e[i][j] = least square error for the  
         segment pi,…, pj

   for j = 1 to n
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])

   return M[n]

O(n3)

can be improved to O(n2) by 
pre-computing various statistics

O(n2)

How do we find the solution?
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Post-Processing:	Finding	the	Solu&on	
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FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)  

Cost? O(n2)

Dynamic	Programming	Process	
• Determine	op&mal	substructure	of	problem	

Ø  Define	the	recurrence	rela&on	
• Define	algorithm	to	find	the	value	of	op&mal	
solu&on	

• Op&onally,	change	algorithm	to	an	itera#ve	
rather	than	recursive	solu&on	

• Define	algorithm	to	find	op#mal	solu#on	
• Analyze	running	&me	of	algorithms	
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Looking	Ahead	
• Wiki	–	Monday	

Ø Sec&ons	6-6.3	
• Problem	Set	8	–	due	Friday	
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