
3/25/16

1

Objec&ves	
• Dynamic	Programming	

Ø Wrapping	up:	weighted	interval	schedule	
Ø Segmented	Least	Squares	
Ø Subset	Sums	

Mar	25,	2016	 1	CSCI211	-	Sprenkle	

Summary:	
Proper&es	of	Problems	for	DP	

• Polynomial	number	of	subproblems	
• Solu&on	to	original	problem	can	be	easily	
computed	from	solu&ons	to	subproblems	

• Natural	ordering	of	subproblems,	easy	to	
compute	recurrence	

Mar	25,	2016	 CSCI211	-	Sprenkle	 2	

Review:	Weighted	Interval	Scheduling	
•  Job	j	starts	at	sj,	finishes	at	fj,	and	has	weight	or	value	vj			
•  Two	jobs	are	compa&ble	if	they	don't	overlap	
•  Goal:	find	maximum	weight	subset	of	mutually	
compa&ble	jobs	

Mar	25,	2016	 CSCI211	-	Sprenkle	 3	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

Weighted	Interval	Scheduling:	
Memoiza&on	Analysis	

Mar	25,	2016	 CSCI211	-	Sprenkle	 4	

Input: n jobs (associated start time sj, finish time fj, and
value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j):
 if M[j] is empty:
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]

M-Compute-Opt(n)

O(n log n)

O(n)

O(n log n)

O(n)

Weighted	Interval	Scheduling:	
Finding	a	Solu&on	
• Dynamic	programming	algorithms	compute	op#mal	
value	

• What	if	we	want	the	solu#on	itself		
(not	simply	the	value)?	

• Do	some	post-processing	

	

Mar	25,	2016	 CSCI211	-	Sprenkle	 5	

M-Compute-Opt(n)
Find-Solution(n)

def Find-Solution(j):
 if j = 0:
 output nothing
 elif vj + M[p(j)] > M[j-1]:
 print j
 Find-Solution(p(j))
 else:
 Find-Solution(j-1)

Runtime?

O(n)

Turning	it	Around…	
•  We	solved	the	Fibonacci	problem	as	both	recursive/memoized	

and	an	itera+ve	algorithm	

Mar	25,	2016	 CSCI211	-	Sprenkle	 6	

Input: n jobs (associated start time sj, finish time fj, and
value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j):
 if M[j] is empty:
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
M-Compute-Opt(n)

Can we write this algorithm as an iterative solution?

3/25/16

2

Towards	Itera&ve	Solu&on…	

Mar	25,	2016	 CSCI211	-	Sprenkle	 7	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

p(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H

Itera&ve	Solu&on	
• Build	up	solu&on	from	subproblems	instead	of	
breaking	down	

	
• Typically,	we’ll	take	itera&ve	approach	

Mar	25,	2016	 CSCI211	-	Sprenkle	 8	

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

M[0] = 0
for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])

Runtime?

O(n)

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 9	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

p(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 10	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 11	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 12	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

 M[j] = max(vj + M[p(j)], M[j-1])	

3/25/16

3

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 13	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2

 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 14	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3

 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 15	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5

 M[j] = max(vj + M[p(j)], M[j-1])	
Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 16	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5

And so on….

 M[j] = max(vj + M[p(j)], M[j-1])	

Example:	Itera&vely	

Mar	25,	2016	 CSCI211	-	Sprenkle	 17	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5 5 6

 M[j] = max(vj + M[p(j)], M[j-1])	

Find the solution?

Review:	Weighted	Interval	Scheduling	
1.  Determine	op&mal	substructure	of	problem	

Ø  Define	the	recurrence	rela&on	
2.  Define	algorithm	to	find	the	value	of	op&mal	

solu&on	
3. Op&onally,	change	algorithm	to	an	itera#ve	

rather	than	recursive	solu&on	
4.  Define	algorithm	to	find	op#mal	solu#on	
5.  Analyze	running	&me	of	algorithms	

Mar	25,	2016	 CSCI211	-	Sprenkle	 18	

Map to weighted-interval scheduling

3/25/16

4

SEGMENTED	LEAST	SQUARES	

Mar	25,	2016	 CSCI211	-	Sprenkle	 19	

Least	Squares	
• Founda&onal	problem	in	sta&s&c	and	numerical	
analysis	

• Given	n	points	in	the	plane:	(x1,	y1),	
	(x2,	y2)	,	.	.	.	,	(xn,	yn)	

• Find	a	line	y	=	ax	+	b	that	minimizes	the	sum	of	
the	squared	error	
Ø “line	of	best	fit”	

	

Mar	25,	2016	 CSCI211	-	Sprenkle	 20	

€

SSE = (yi − axi −b)2
i=1

n
∑

x

y

Sum of
squared

error

Least	Squares	
•  Founda&onal	problem	in	sta&s&c	and	numerical	analysis	
•  Given	n	points	in	the	plane:	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	
•  Find	a	line	y	=	ax	+	b	that	minimizes	the	sum	of	the	squared	

error	
Ø  “line	of	best	fit”	

	
•  Closed	form	solu&on.		Calculus		⇒		min	error		

is	achieved	when	

Mar	25,	2016	 CSCI211	-	Sprenkle	 21	

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Sum of�
squared error

Least	Squares	
• What	happens	to	the	error	if	we	try	to	fit	one	
line	to	these	points?	

	
• What	paiern	does	it	seem	like	these	points	
have?	

Mar	25,	2016	 CSCI211	-	Sprenkle	 22	

x

y

Least	Squares	
• What	happens	to	the	error	if	we	try	to	fit	one	
line	to	these	points?	
Ø Large	error	

• Paiern:	More	like	3	lines	
Mar	25,	2016	 CSCI211	-	Sprenkle	 23	

x

y

Segmented	Least	Squares	
• Points	lie	roughly	on	a	sequence	of	line	segments	
• Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,		
(xn,	yn)	with	x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	
segments	that	minimizes	f(x)	

Mar	25,	2016	 CSCI211	-	Sprenkle	 24	
x

y

If I want the best fit, how many lines should I use?

3/25/16

5

Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	line	segments	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	
minimizes	f(x)	

Mar	25,	2016	 CSCI211	-	Sprenkle	 25	
x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to
balance accuracy and parsimony?

Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	several	line	segments.	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	minimizes:	
Ø  E:	sum	of	the	sums	of	the	squared	errors	in	each	segment	
Ø  L:	the	number	of	lines	

•  Tradeoff	func+on:		E	+	c	L,	for	some	constant	c	>	0.	

Mar	25,	2016	 CSCI211	-	Sprenkle	 26	
x

y

How should we define
an optimal solution?

Segmented	Least	Squares	
• What	made	it	seem	like	the	points	were	in		
3	lines?		What	happened?	

Mar	25,	2016	 CSCI211	-	Sprenkle	 27	

x

y

Segmented	Least	Squares	
• What	made	it	seem	like	the	points	were	in		
3	lines?		What	happened?	

• Error	increased	
• Looking	for	change	in	linear	approxima&on	

Ø Where	to	par&&on	points	into	line	segments	
Mar	25,	2016	 CSCI211	-	Sprenkle	 28	

x

y

Recall:		
Proper&es	of	Problems	for	DP	
• Polynomial	number	of	subproblems	
• Solu&on	to	original	problem	can	be	easily	
computed	from	solu&ons	to	subproblems	

• Natural	ordering	of	subproblems,	easy	to	
compute	recurrence	

Mar	25,	2016	 CSCI211	-	Sprenkle	 29	

We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

Toward	a	Solu&on	
• Consider	just	the	first	or	last	point	

Mar	25,	2016	 CSCI211	-	Sprenkle	 30	

x

y

What do we know about those points?
their segments? cost of a segment?

3/25/16

6

Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	

Mar	25,	2016	 CSCI211	-	Sprenkle	 31	

x

y

Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	
Ø Solve	for	p1,	…,	pi-1	

Mar	25,	2016	 CSCI211	-	Sprenkle	 32	

x

y

Next: Formulate as a recurrence

Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• How	do	we	compute	OPT(j)?	
Ø Last	problem:	binary	decision	(include	job	or	not)	
Ø This	&me:	mul+way	decision	

• Which	op&on	do	we	choose?	
	

Mar	25,	2016	 CSCI211	-	Sprenkle	 33	

Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• To	compute	OPT(j):	
Ø Last	segment	contains	points	pi,	pi+1,	…	,	pj	for	some	i	
Ø Cost	=	e(i,	j)	+	c	+	OPT(i-1).	

Mar	25,	2016	 CSCI211	-	Sprenkle	 34	

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

Segmented	Least	Squares:	Algorithm	

Mar	25,	2016	 CSCI211	-	Sprenkle	 35	

INPUT: n, p1,…,pN , c

Segmented-Least-Squares()
 M[0] = 0
 e[0][0] = 0 # needed?
 for j = 1 to n
 for i = 1 to j
 e[i][j] = least square error for the

 segment pi, …, pj

 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])

 return M[n]

Costs?

Segmented	Least	Squares:	
	Algorithm	Analysis	

• Boileneck:	compu&ng	e(i,	j)	for	O(n2)	pairs,	O(n)	
per	pair	using	previous	formula	

Mar	25,	2016	 CSCI211	-	Sprenkle	 36	

can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pN , c

Segmented-Least-Squares()
 M[0] = 0
 e[0][0] = 0
 for j = 1 to n
 for i = 1 to j
 e[i][j] = least square error for the  
 segment pi,…, pj

 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])

 return M[n]

O(n3)

can be improved to O(n2) by
pre-computing various statistics

O(n2)

How do we find the solution?

3/25/16

7

Post-Processing:	Finding	the	Solu&on	

Mar	25,	2016	 CSCI211	-	Sprenkle	 37	

FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)

Cost? O(n2)

Dynamic	Programming	Process	
• Determine	op&mal	substructure	of	problem	

Ø  Define	the	recurrence	rela&on	
• Define	algorithm	to	find	the	value	of	op&mal	
solu&on	

• Op&onally,	change	algorithm	to	an	itera#ve	
rather	than	recursive	solu&on	

• Define	algorithm	to	find	op#mal	solu#on	
• Analyze	running	&me	of	algorithms	

Mar	25,	2016	 CSCI211	-	Sprenkle	 38	

Looking	Ahead	
• Wiki	–	Monday	

Ø Sec&ons	6-6.3	
• Problem	Set	8	–	due	Friday	

Mar	25,	2016	 CSCI211	-	Sprenkle	 39	

