Objectives		
- Dynamic Programming		
> Wrapping up: weighted interval schedule		
> Segmented Least Squares		
> Subset Sums		

Summary:
Properties of Problems for DP

- Polynomial number of subproblems
- Solution to original problem can be easily
computed from solutions to subproblems
- Natural ordering of subproblems, easy to
compute recurrence

Mar 25,2016

Weighted Interval Scheduling: Memoization Analysis

Input: n jobs (associated start time s_{j}, finish time f_{j}, and value v_{j})
Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n} O(n \log n)$ Compute $p(1), p(2), \ldots, p(n) O(n \log n)$
for $j=1$ to n
$M[j]=$ empty $O(n)$
$M[0]=0$
M-Compute-Opt(j):
if M[j] is empty:
$M[j]=\max \left(v_{j}+M\right.$-Compute-Opt $(p(j)), M$-Compute-Opt($\left.\left.j-1\right)\right)$ return $M[j]$
M-Compute-Opt(n) O(n)
Mar 25, $2016 \quad$ CSC1211-Sprenkle
4

Turning it Around...

```
- We solved the Fibonacci problem as both recursive/memoized
    and an iterative algorithm
        Can we write this algorithm as an iterative solution?
Input: }n\mathrm{ jobs (associated start time s}\mp@subsup{s}{j}{}\mathrm{ , finish time f}\mp@subsup{f}{j}{}\mathrm{ , and
value v}\mp@subsup{v}{j}{}\mathrm{ )
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
Compute p(1), p(2), .., p(n)
for }j=1\mathrm{ to n
    MM[j]= empty
M-Compute-Opt(j):
    if M[j] is empty
        M[j] = max( }\mp@subsup{v}{j}{}+M\mathrm{ -Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
M-Compute-Opt(n)
```


Iterative Solution			
- Build up solution from subproblems instead of breaking down			
Input: $n, s_{1}, \ldots, s_{n}, f_{1}, \ldots, f_{n}, v_{1}, \ldots, v_{n}$ Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Compute $p(1), p(2), \ldots, p(n)$			
$\mathrm{M}[$ [0] $]=0$ 		$\frac{\text { Runtime! }}{O(n)}$	
- Typically, we'll take iterative approach			
Meres, 2016	cscan - Seeneme		

SEGMENTED LEAST SQUARES	
war25.2016	

Least Squares

- What happens to the error if we try to fit one line to these points?

- What pattern does it seem like these points have?

Mar 25, 2016
CSCl211- Sprenkle

Segmented Least Squares

- Points lie roughly on a sequence of line segments
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, $\left(x_{n}, y_{n}\right)$ with $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of line segments that minimizes $f(x)$
If I want the best fit, how many lines should I use?

Mar 25, 2016
CSC1211-Sprenkle

Segmented Least Squares

- Points lie roughly on a sequence of several line segments.

Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of line segments that minimizes: $>E$: sum of the sums of the squared errors in each segment < L: the number of lines
Tradeoff function: $E+c L$, for some constant $\mathrm{c}>0$.

Recall:

Properties of Problems for DP

- Polynomial number of subproblems
- Solution to original problem can be easily computed from solutions to subproblems
- Natural ordering of subproblems, easy to compute recurrence

We need to:

- Figure out how to break the problem into subproblems
- Figure out how to compute solution from subproblems - Define the recurrence relation between the problems

Toward a Solution

- Consider just the first or last point

What do we know about those points?
their segments? cost of a segment?


```
Dynamic Programming: Multiway Choice
- Notation.
    OPT(j) = minimum cost for points }\mp@subsup{\textrm{p}}{1}{},\mp@subsup{\textrm{p}}{\textrm{i}+1}{},\ldots.,\mp@subsup{\textrm{p}}{\textrm{j}}{}
    >e(i,j) = minimum sum of squares for points
        pi, pi+1 ,\ldots, p
    - How do we compute OPT(j)?
    > Last problem: binary decision (include job or not)
     This time: multiway decision
        - Which option do we choose?
    Mar 25,2016

\section*{Segmented Least Squares: Algorithm}
```

 INPUT: n, p
 Segmented-Least-Squares()
 M[0] = 0
 e[0][0] = 0 # needed?
 j=1 to n
 e[i][j] = least square error for the
 segment pi, ..., p}\mp@subsup{p}{j}{
 for }j=1\mathrm{ to n
 M[j] = min 1sisj(e[i][j] + c+M[i-1])
 return M[n]
    ```

\section*{Dynamic Programming: Multiway Choice}
- Notation.
\(>\) OPT( j\()=\) minimum cost for points \(\mathrm{p}_{1}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\).
\(>\mathbf{e}(\mathbf{i}, \mathrm{j})=\) minimum sum of squares for points \(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\).
- To compute OPT(j):
\(>\) Last segment contains points \(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\) for some i
\(>\) Cost \(=\mathrm{e}(\mathrm{i}, \mathrm{j})+\mathrm{c}+\) OPT \((\mathrm{i}-1)\).


Mar 25, 2016
CSCI211 - Sprenkle \(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Post-Processing: Finding the Solution} \\
\hline \multicolumn{4}{|l|}{```
FindSegments(j):
    if j = 0:
        output nothing
    else:
        Find an i that minimizes }\mp@subsup{e}{i,j}{}+c+M[i-1
        Output the segment {\mp@subsup{p}{i}{},\ldots,\mp@subsup{p}{j}{\prime}}
        FindSegments(i-1)
```} \\
\hline & Cost? & \(O\left(n^{2}\right)\) & \\
\hline Mar 5,2016 & csa & 211-Spenke & \({ }^{37}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Dynamic Programming Process \\
- Determine optimal substructure of problem \\
\(>\) Define the recurrence relation \\
- Define algorithm to find the value of optimal \\
solution \\
- Optionally, change algorithm to an iterative \\
rather than recursive solution \\
- Define algorithm to find optimal solution \\
- Analyze running time of algorithms \\
\\
Mar25,2016 \\
\hline
\end{tabular}

Looking Ahead
- Wiki - Monday
\(>\) Sections 6-6.3
- Problem Set 8 - due Friday```

