Objectives	
- Dynamic Programming	
	$>$ Wrapping up Knapsack
	$>$ Sequence Alignment
	$>$ Shortest Path
Mar 30, 2016	

Review
What is the knapsack problem?
What was our solution to the problem?
Mar 30,2016 cscri11- Sprenke

$$
\begin{aligned}
& \text { Knapsack Problem: Running Time } \\
& \text { - Running time. } \Theta(\mathrm{n} \text { W) } \\
& >\text { Not polynomial in input size! } \\
& >\text { "Pseudo-polynomial" } \\
& \text { - Reasonably efficient when } \mathrm{W} \text { is reasonably small } \\
& >\text { Decision version of Knapsack is NP-complete } \\
& \text { [Chapter 8] } \\
& \text { - Knapsack approximation algorithm. } \\
& \text { There exists a polynomial algorithm that } \\
& \text { produces a feasible solution that has value within } \\
& 0.01 \% \text { of optimum. [Section 11.8] }
\end{aligned}
$$

Mar 30, 2016
CSC1211 - Sprenkle

Edit Distance

- [Levenshtein 1966, Needleman-Wunsch 1970]
> Gap penalty: δ
$>$ Mismatch penalty: $\alpha_{p q}$
- If p and q are the same, then mismatch penalty is 0
$>$ Cost = sum of gap and mismatch penalties

C	T	G	A	c	c	T	A	C	c	T		c	T	G	A	c			A	c	c	T
c	c	T	6	A	c	T	A	C	A	T	c	c	T	G	A	c			A	c	A	T

Mar 30, 2016
CSC1211 - Sprenkle
10

CSC1211-Sprenkle
2 mismatches
crossing
Mar 30, 2016
crossing ${ }^{11}$

Sequence Alignment Case Analysis

- Consider last character of the strings X and Y :
x_{M} and y_{N}
$>\mathrm{M}$ and N are not necessarily equal
- i.e., strings are not necessarily the same length
- What are the possibilities for x_{M} and y_{N} in terms of the alignment?

Sequence Alignment Cost Analysis		
- Consider last character of strings X and Y:		
x_{M} and y_{N}		
$>$ Case 1: x_{M} and y_{N} are aligned		
Pay mismatch for $\mathrm{x}_{\mathrm{M}}-\mathrm{y}_{\mathrm{N}}+$ min cost of aligning rest of strings		
- $\operatorname{OPT}(\mathrm{M}, \mathrm{N})=\alpha_{\mathrm{XmYn}}+\operatorname{OPT}(\mathrm{M}-1, \mathrm{~N}-1)$		
$>$ Case 2: x_{M} is not matched		
- Pay gap for $\mathrm{x}_{\mathrm{M}}+$ min cost of aligning rest of strings		
$>$ Case 3: y_{N} is not matched		
- Pay gap for $\mathrm{y}_{\mathrm{N}}+$ min cost of aligning rest of strings		
- $\operatorname{OPT}(\mathrm{M}, \mathrm{N})=\delta+\operatorname{OPT}(\mathrm{M}, \mathrm{N}-1)$		
Mar 30, 2016	CSC1211-Sprenkle	16

Sequence Alignment:

Problem Structure
Gaps for remainder of
$O P T(i, j)=\left\{\begin{array}{ll}j \delta \\ \min \begin{cases}\alpha_{x_{i}, y}+O P T(i-1, j-1) \\ \delta+O P T(i-1, j) \\ \delta+O P T(i, j-1)\end{cases} & \text { if } \mathrm{i}=0 \\ \text { Gotherwise }\end{array}\right.$ Ran out of $\mathrm{I}^{\text {st }}$ string
Gaps for remainder of X
Mar 30, 2016 Ran out of $2^{\text {nd }}$ string

