Objectives	
- Dynamic Programming: sequence alignment	
- Network Flow	
$\quad>$ Max flow	
$>$ Min cut	
Apr1,2016	

Sequence Alignment		
Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost		
An alignment M is a set of ordered pairs $\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}$ such that each item occurs in at most one pair and no crossings		
- The pair $\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}$ and $\mathrm{x}_{\mathrm{i}^{\prime}}-\mathrm{y}_{\mathrm{j}^{\prime}}$ cross if $\mathrm{i}<\mathrm{i}^{\prime}$, but $\mathrm{j}>\mathrm{j}^{\prime}$.		
$\text { Mar 3, } 2016 \text { crossing }$	cscri11-Sprenke	2 mismatches

Example

$\mathbf{X}=$ bait		$\mathbf{Y}=$ boot			
$\begin{aligned} & \alpha=1, \text { for vowel mismatch } \\ & \alpha=2, \text { for other mismatches } \\ & \delta=2 \end{aligned}$					
		b	a	i	t
i	0	2	4	6	8
b	2	0	2	4	6
0	4				
0	6				
t	8				

Apr 1, 2016
CSCI211-Sprenkle

Sequence Alignment: Algorithm

```
    Sequence-Alignment(m, n, x ( }\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{\prime},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha
        for i = 0 to m
            M[0, i] = i\delta
        for j = 0 to n
            M[j, 0] = j\delta
    for i=1 to m
            for j=1 to n
                M[i, j] = min(\alpha[xi, yj] +M[i-1, j-1],
                                    \delta +M[i-1, j],
    return M[m, n]
What are the space costs?
When computing M[i,j], which entries in M are used?
Apr 1,2016 CSCI211-Sprenkle 14
```


Sequence Alignment: Analysis

```
Sequence-Alignment(m, n, x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{\prime},\delta,\alpha
    for i = 0 to m
        M[0, i] = i\delta
    for j = 0 to n
        M[j, 0]= j\delta Space Cost:O(mn)
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min}(\alpha[\mp@subsup{x}{i}{},\mp@subsup{y}{j}{}]+M[i-1,j-1]
                        \delta +M[i-1, j],
                        \delta +M[i, j-1])
        return M[m, n]
            Observation: to calculate the current value,
        we only need the row above us and the entry to the left
Apr 1,2016
            CSC1211-Sprenkle

Why Do We Care About Space?
- For English words or sentences, probably doesn't
matter
- Matters for Biological sequence alignment
> Consider: 2 strings with 100,000 symbols each
- Processor can do 10 billion primitive operations
- BUT dealing with a 10 GB array

Apr1,2016
cscr21- Sprenke CSCI211-Sprenkle 19

\section*{Sequence Alignment: Linear Space \\ - Can we avoid using quadratic space? \\ \(>\) Optimal value in \(\mathrm{O}(\mathrm{m})\) space and \(\mathrm{O}(\mathrm{mn})\) time. \\ - Compute OPT( \((\mathrm{i}, \bullet)\) from OPT \((\mathrm{i}-1, \bullet)\) \\ - BUT, no simple way to recover alignment itself \\ - Theorem. [Hirschberg 1975] Optimal alignment in \(O(m+n)\) space and \(O(m n)\) time. \\ \(>\) Clever combination of divide-and-conquer and dynamic programming \\ \(>\) Section 6.7 \\ Apr 1, 2016 \\ CSC1211 - Sprenkle 20}
```

Dynamic Programming Wrapup
- What we didn't cover
> 6.5: RNA Secondary Structure: Dynamic
Programming Over Intervals
> 6.7: Sequence Alignment in Linear Space
- Dynamic programming + Divide and Conquer }->\mathrm{ oh
my!
> 6.8: Shortest Paths
> 6.9:Shortest Paths and
Distance Vector Protocols
- In practice in internet routing

```
    Apr 1, 2016
        CSCI211 - Sprenkle
        21

\section*{Flow Network}
- \(\mathrm{G}=(\mathrm{V}, \mathrm{E})=\) directed graph, no parallel edges
- Two distinguished nodes: \(s=\) source, \(t=\) sink
- \(c(e)=\) capacity of edge \(e,>0\)



Flows: Definitions
- The value of a flow \(f\) is \(v(f)=\sum_{\text {e out of } s} f(e)\)


Value \(=4\)

Apr 1, 2016
CSCI211-Sprenkle
26

\section*{Towards a Max Flow Algorithm}
- Greedy algorithm
\(>\) Start all edges \(\mathrm{e} \in \mathrm{E}\) at \(\mathrm{f}(\mathrm{e})=0\)
\(>\) Find an \(s-t\) path P with the most capacity: \(\mathrm{f}(\mathrm{e})<\mathrm{c}(\mathrm{e})\)
> Augment flow along path P
> Repeat until you get stuck


\section*{Towards a Max Flow Algorithm}




Applying Residual Graph
Used to find the maximum flow
\(>\) Use similar idea to greedy algorithm
Residual path: simple s-t path in \(G_{f}\)
\(>\) Also known as augmenting path
Apr 1,2016
csci211- Sprenkle



\section*{Ford-Fulkerson Algorithm}

G:

\(\mathrm{G}_{i}\)


\section*{Ford-Fulkerson Algorithm}

G:



\section*{Ford-Fulkerson Algorithm}

G:


Flow value \(=18\)


\section*{Ford-Fulkerson Algorithm}


\section*{Looking Ahead \\ - PS 9 (last one!) due Friday}
\(>\) See Course schedule page for starter code.
- Wiki due Monday - Network flows focus. \(f=\) Augment \((f, c, P) \quad\) \# change the flow
update \(G_{f}\) \# build a new residual graph
return f


\section*{Analyzing Augmenting Path Algorithm}
Ford-Fulkerson(G, s, \(t, c)\)
foreach \(e \in E f(e)=0 \quad\) \# initially no flow
\(G_{f}=\) residual graph
while there exists augmenting path \(P\)
\(\quad\) \# Augment \((f, c, P)\) change the flow
update \(G_{f}\)
\# build \(a\) new residual graph
return \(f\)


Apr 1, 2016
CSC1211- Sprenkle
48```

