Objectives		
- Network Flow		
> Motivation		
$>$ Max flow		
$>$ Min cut		

Review: Maximum Flow Problem
Make network most efficient
$>$ Use most of available capacity
Goal: Find s-t flow of maximum value
Apr 4, 2016
capacity $\rightarrow 15$
flow $\rightarrow 14$

Augmenting Path Algorithm
 c=capacity

```
Ford-Fulkerson(G, s, t, c)
    foreach e EE f'(e)=0 # initially no flow
    Gf}=\mathrm{ residual graph
    while there exists augmenting path P
        f=Augment(f, c, P) # change the flow
        update }\mp@subsup{G}{f}{}\mathrm{ # build a new residual graph
    return f
```

Augment (f, c, P)
b = bottleneck(P) \# edge on P with least capacity
foreach $e \in P$
if $(e \in E) f(e)=f(e)+b$ \# forward edge, \uparrow flow
else $\quad f\left(e^{R}\right)=f(e)-b \quad \#$ forward edge, \downarrow flow
return
pr 4, $2016 \quad$ CSCL211 - Sprenkle
4

Ford-Fulkerson Algorithm

G:

What does the residual graph look like?

Apr 4, 2016
CSC1211-Sprenkle

Ford-Fulkerson Algorithm

G:

σ_{i}

Ford-Fulkerson Algorithm

G:

Ford-Fulkerson Algorithm

G:

G_{i}

Ford-Fulkerson Algorithm

MINIMUM CUTS

Flow Value Lemma (FVL)

- Let f be any flow, and let (A, B) be any s-t cut.
- Then
- Pf. $v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)$

Apr 4, 2016
CSC1211-Sprenkle 28

Intuition Behind Correctness of F-F Algorithm

- Let A be set of vertices reachable from s in residual graph at end of $\mathrm{F}-\mathrm{F}$ alg execution
- By definition of $A, s \in A$
- By definition of the F-F algorithm's resulting flow, $t \notin A$

Max-Flow Min-Cut Theorem

Augmenting path theorem.

Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem.
 The value of the max flow is equal to the value of the min cut.

- Proof strategy. Prove both simultaneously by showing the following are equivalent:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
Apr 4, 2016 cscl211-Sprenkle See formal proof in book
\qquad
CSCI211-Sprenkle See formal proof in book

Analyzing Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c)
    foreach e E E f(e) = 0 # initially no flow
    Gf}=\mathrm{ residual graph
    while there exists augmenting path P
        f = Augment(f, c, P) # change the flow
        f=Augment(f, c, P) # change the flow 
        return f
```

Augment (f, c, P)
b = bottleneck(P) \# edge on P with least capacity
foreach $e \in P$
if $(e \in E) f(e)=f(e)+b$ \# forward edge, \uparrow flow
else $\quad f\left(e^{R}\right)=f(e)-b \quad$ \# forward edge, \downarrow flow
return f
Apr 4, 2016
CSCI211-Sprenkle
\qquad

Running Time

- Assumption. All capacities are integers between 1 and F.
- Invariant. Every flow value $f(e)$ and every residual capacity's $c_{f}(e)$ remains an integer throughout algorithm.
- Theorem. Algorithm terminates in at most $\mathrm{v}\left(\mathrm{f}^{*}\right) \leq \mathrm{nF}$ iterations. Pf. Each augmentation increases value by at least 1.
Corollary. If $F=1$, Ford-Fulkerson runs in $\mathrm{O}(\mathrm{mn})$ time.
- Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.
- Pf. Since algorithm terminates, theorem follows from invariant.

Apr 4, 2016
CSCl211-Sprenkle

Looking Ahead	
- Wiki: Due tonight (7.1-7.2, 7.5, 7.7)	
>7.5 won't be discussed in class	
Problem Set 9 due Friday	
Apr4, 2016	

