Objectives

Network Flow
» Motivation
» Max flow

» Min cut

Apr 4, 2016 €SCI211 - Sprenkle 1

Review: Residual Graph: G;

Original edge: e=(u,v) EE ity
> Flow f(e), capacity c(e) A
Residual edge
e = (u, v) w/ capacity c(e) - f(e)
» eR = (v, u) with capacity f(e)
To undo flow
Residual graph: G¢=(V, E;)
» Residual edges with positive residual capacity
> E= {e f(e) < c(e)} U {eR f(e) >0}

6 «—flow

residual capacity

=y

N

6

™ residual capacity

u

Forwurd edges Backward edges

Review: Maximum Flow Problem

Make network most efficient
» Use most of available capacity

9 —5
\ | \9
0
/ E \l , \
8
\ \ 4 | '°/
capacity = |5 ¢
flow = 14 14 \l/ Value =28
30—

Apr 4,2016 €SCI211 - Sprenkle 2

b<—;—w<—;

Apr 4, 2016 €SCI211 - Sprenkle 3

c=capacity

Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G; = residual graph

while there exists augmenting path P
f = Augment(f, c, P # change the flow
update G¢ # build a new residual graph

return f

Augment(f c, P)
= bottleneck(P) # edge on P with least capacity
for'each e€pP
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(eR) = f(e) - b # forward edge, ¥ flow
return f

Apr 4,2016 C€SCI211 - Sprenkle 4

Ford-Fulkerson Algorithm

2 flow
I \ / capacity
60 o

Flow value = 0

Apr 4, 2016 €5C1211 - Sprenkle 5

Ford-Fulkerson Algorithm

Flow value = 0

What does the residual graph look like?

Apr 4, 2016 €5CI211 - Sprenkle 6

4/4/16

Ford-Fulkerson Algorithm

Flow value = 0

Apr 4, 2016 €SCI211 - Sprenkle 7

Ford-Fulkerson Algorithm

Bottleneck
s 4 4 residual capacity
Gg | I /
10 2 ° 6 10 \
10——(3 g ———5 10
Apr4,2016 €5CI211 - Sprenkle 8

Ford-Fulkerson Algorithm

0
2 4 ——————{4
G I0x/|\8 I\O
10 2B 8 60 10
2
0 X 2 10%
— 10— (3 ———— g —————5 —— |0 —{t
Flow value = 8
2 4

Apr 4, 2016 €SCI211 - Sprenkle 9

Ford-Fulkerson Algorithm

0
2 4 —————(a
G |o/|\s]\xs
10 22 8 6x Io
6
/ne l XN |o\
— 10— (3 ——— g 5 —— o —t

Apr 4,2016 C€SCI211 - Sprenkle 10

Ford-Fulkerson Algorithm

Apr 4, 2016 €5C1211 - Sprenkle 1

Ford-Fulkerson Algorithm

2 3
2 4 ——a
G m/ \37 I\x9
10 20 8 66 10
/x9 l ﬁx m\
s —— 10 ——(3 ———— 9 —————{5 —— |0 —{t

2
3 .
s/Z ! 5)— 0 ——1
S~

Apr4,2016 €5CI211 - Sprenkle 12

4/4/16

Ford-Fulkerson Algorithm

Flow value = 19

/f%%\
LN

csc11-sprg How do we know we're done?

Apr4,2016

Ford-Fulkerson Algorithm

Cut capacity = 19 Flow value = 19

AN

What is reachable from s
Apr4,2016 €5CI211 - Sprenkle 14

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P # change the flow
update G # build a new residual graph

return f

Augment(f c, P
= bottleneck(P) # edge on P with least capacity
for'each e€EP
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e?) = f(e) - b # forward edge, ¥ flow
return f

Why does alg work? What is happening at each iteration?
Apr4,2016 | What is the running time?

Need more analysis ...

MINIMUM CUTS

Apr 4,2016 CSCI211 - Sprenkle 16

Cuts

An s-t cut is a partition (A, B) of V with s € A and
teEB

The capacity of a cut (A, B) is cap(d,B) = 3 cle)

coutof A

What is the capacity | |, 9
of this cut?

Apr 4,2016 C€SCI211 - Sprenkle

Minimum Cut Problem

Find an s-t cut of minimum capacity
on_maximum flow

» Puts uppert

Same graph,
different cut

Capacity = 10 +8 + 10
8

Apr 4, 2016 €SCI211 - Sprenkle 18

4/4/16

Recall

© The value of a flow fis v(f) = 3, ;¢ of s f(€)
0
9
4 0 o
1o 44 15 15 0 10
' 0 4 4
5 8 10
0 0
capacity = |5 40 6 150 10
flow = 0 0
4)— 30 &!} Value = 4

Apr 4, 2016 CSCI211 - Sprenkle 19

Flow Value Lemma

© Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = fout(A) — fin(A).

What is the value 3@ = 3/ =)

coutof A

of this flow?

Apr 4,2016 CSCI211 - Sprenkle 20

Flow Value Lemma

© Let fbe any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = fout(A) — fin(A).

Sfle) = Zfle) = v(f)
einto A

eoutof A

Apr 4, 2016 CSCI211 - Sprenkle 21

Flow Value Lemma (FVL)

© Let f be any flow, and let (A, B) be any s-t cut.

© Then
° Pf. V() = out o af(€) = X in 1o 4 f(€)

f(e) By definition by flow conservation,
e out of s all terms except v = s are 0

= X fo+ X (X flo- X f)

cout of s vEA#s ¢ out of v e into v

= X fo- 3 fo+ X (¥ flo- 3 fl)

e out of s vEA#s € out of v ¢ into v

> fle= X fe)

vEA € out of v e into v

X fle- X fle)

e out of A einto A

o(f)

Possibilities for edge e:
« Both ends inA (0)

Apr 4,2016
Be « Points out from A (+), Points in to A ()

Weak Duality

© Let fbe any flow and let (A, B) be any s-t cut.

“>Then the value of the flow is at most the cut’s
capacity

Cut capacity =30 = Flow value < 30

Apr 4,2016 CSCI211 - Sprenkle 23

Weak Duality

© Let fbe any flow. Then, for any s-t cut (A, B)
v(f) = cap(A, B).

© Pf.
ByFVL v(f) = 3 flo- 3 fle)

eoutof A eintoA

= 3 f@
eoutof A

= > cle)
eoutof A

= cap(4,B)

Apr 4, 2016 €5CI211 - Sprenkle 2

4/4/16

4/4/16

Certificate of Optimality Recall: Residual Graph G;
Corollary. Let fbe any flow, and Original edge: e = (u,v) €E iy
let (A, B) be any cut. If v(f) = cap(A, B), > Flow f(e), capacity c(e) W

6 «—flow

then fis a max flow and (A, B) is a min cut. Residual edge

Value of flow =28 ~ .
Cut capacity =28 = » e = (u, v) w/ capacity c(e) - f(e)

Flow value < 28

residual capacity

» eR = (v, u) with capacity f(e) Q ”" o)
To undo flow 6
N N
Residual graph: G;=(V, E) residual capaciy
» Residual edges with positive residual capacity

> Ee= ge 1 fle) < c(e)}l U l{eR :f(e) > 0}l

T Y
Forward edges Backward edges

Apr 4, 2016 25 Apr 4,2016 CSCI211 - Sprenkle 26

Intuition Behind Correctness of

Recall: Augmenting Path Algorithm F-F Algorithm

Ford-Fulkerson(G, s, t, c)

foreach e € E (&) = 0 # initidlly no 1 i i
e el g RS 19 1 Let A be set of vertices reachable from s in

residual graph at end of F-F alg execution

while there exists augmenting path P

f = Augment(f, c, P) # change the flow s
update G¢ T # build a new residual graph By definition of A' SEA
return f By definition of the F-F algorithm’s resulting flow,
tEA
Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Apr 4, 2016 CSCI211 - Sprenkle 27 Apr 4,2016 CSCI211 - Sprenkle 28
Ford-Fulkersa - What do we know about the flow out of A? Ford-Fulkersag - What do we know about the flow out of A?
* What do we know about the flow into A? * What do we know about the flow into A?

O :g>@

Flow value = 19

Cut capacity = 19

* All edges out of A are completely saturated
* All edges into A are completely unused

: Gg
2 10 2 7 6 |
A:nodes reachgbfe l
9 10 O
Apr4,2016 CSCI211 - Sprenkle 29 Aprd, 2016 CSCI211 - Sprenkle 30

Max-Flow Min-Cut Theorem

Flow f'is a max flow iff there are no augmenting paths.

The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

Apr 4, 2016 €SCI211 - Sprenkle

See formal proof in I:;look

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
Gy = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update G¢ # build a new residual graph

return f

Costs?

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)

Om) foreach e € E f(e) = # initially no flow

Om) G¢ = residudl graph

Find |path: O(m); Iterations: O(F) iterations, where F = max flow

while there exists augmenting path P

o(m) f = Augment(f, c, P) # change the flow

om) update G # build a new residual graph

return f
Total: O(Fm)

Augment(f, c, P)

else f(e?) = f(e) - b # forward edge, ¥ flow
return f
Apr 4,2016 CSCI211 - Sprenkle 32
Running Time

Assumption. All capacities are integers between 1 and F.

Invariant. Every flow value f(e) and every residual capacity’s
ci(e) remains an integer throughout algorithm.

Theorem. Algorithm terminates in at most v(f*) < nF iterations.
Pf. Each augmentation increases value by at least 1.
Corollary. If F =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.

Apr 4,2016 CSCI211 - Sprenkle 34

o b = bottleneck(P) # edge on P with least capacity
O foreach e € P

(1) if (e € E) f(e) = f(e) + b # forward edge, A flow
(1) else f(e?) = f(e) - b # forward edge, ¥ flow

return f
1‘ Total: O(n) = O(m), since n <2m

Apr 4, 2016 CSCI211 - Sprenkle 33

Looking Ahead

Wiki: Due tonight (7.1-7.2, 7.5, 7.7)
» 7.5 won’t be discussed in class

Problem Set 9 due Friday

Apr 4,2016 €SCI211 - Sprenkle 35

4/4/16

