Objectives		
- Algorithms Retrospective		
- Comp	actability	

Review

- What is the power of the max-flow/min-cut
algorithm?
- What is our process in solving problems using
network flow?

Anos,2016

Review: Network Flow Solutions

1. Model problem as a flow network
$>$ Describe what nodes, edges, and capacity represent
$>$ Describe what flow represents and how that maps to your solution
> Run Ford-Fulkerson algorithm - Map back to original problem
2. Prove that the solution found is correct/feasible/ optimal
3. Prove that you find all solutions
4. Analyze running time
$>$ Creating model

- FF algorithm

Apr 8, 2016
CSCl211 - Sprenkle

Objectives

- Oh, the places you've been!
- Oh, the places you'll go!

Now, everything comes down to expert knowledge of algorithms and data structures. If you don't speak fluent \mathbf{O}-notation, you may have trouble getting your next job at the technology companies in the forefront. - Larry Freeman

Algorithm Design Patterns

- What are some approaches to solving problems?
- How do they compare in terms of difficulty?

Algorithm Design Patterns
 - Greedy
 Divide-and-conquer
 - Dynamic programming
 Duality/network flow

Course Objectives: Given a problem...
You'll recognize when to try an approach

Know the steps to solve the problem using the approach - e.g., breaking it into subproblems, sorting possibilities in some order
Know how to analyze the run time of the solution - e.g., solving recurrence relation Apr $8,2016 \quad$ CSCC1211-Sprenkle

My Algorithms Approach	
- Why problems?	
- Why wiki?	
- Research to support decisions	
Anes 32066	

Algorithm Design Patterns	
- Greedy	
- Divide-and-conquer	
- Dynamic programming	
- Duality/network flow	
- Reductions - Chapter 8	
- Local search - Chapter 12	
- Randomization - Chapter 13	
Arser82016	8

What Was Our Goal In Finding a Solution?

Polynomial Time \rightarrow Efficient

Apr 8, 2016
CSCl211-Sprenkle

POLYNOMIAL-TIME REDUCTIONS	
Ares 20216	

Classify Problems According to Computational Requirements

Fundamental Question:
Which problems will we be able to solve in practice?

Apr 8, 2016
CSC1211-Sprenkle

Classify Problems According to
 Computational Requirements

Which problems will we be able to solve in practice?	
Working definition. [Cobham 1964, Edmonds 1965, Rabin	
1966] Those with polynomial-time algorithms.	
\qquadYes Probably no Shortest path Longest path Matching 30-matching Min cut Max cut 2-SAT 3-SAT Planar 4-color Planar 3-color Bipartite vertex cover Vertex cover Primality testing Factoring	
Apr 8,2016	

Classify Problems

Classify problems according to those that can be solved in polynomial-time and those that cannot.

In the mean time...
Classify problems according to those that can be solved in polynomial-time and those that cannot.

Polynomial-Time Reduction

> Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time?

- Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using.
$>$ Polynomial number of standard computational steps, plus
> Polynomial number of calls to oracle that solves problem Y
- Assume have a black box that can solve Y

$$
\text { For } \mathbf{X}+\mathbf{Y}
$$

- Notation: $\mathrm{X} \leq_{\mathrm{p}} \mathrm{Y}$
> " X is polynomial-time reducible to Y "
- Conclusion: If Y can be solved in polynomial time and $X \leq_{p} Y$, then X can be solved in polynomial time.
\qquad
CSC1211-Sprenkle

```
Fun Fact: Connecting Chapters 7 and 8
- Karp
    > of the Edmonds-Karp algorithm (max-flow problem
        on networks)
    published a paper in complexity theory on
        "Reducibility Among Combinatorial Problems"
        - proved 21 Problems to be NP-complete
    Apr 8, 2016
        CSCI211 - Sprenkle
        19
```


NP-Complete Problems

- Problems from many different domains whose complexity is unknown

NP-completeness and proof that all problems are equivalent is POWERFUL!
$>$ All open complexity questions \rightarrow ONE open question!

What does this mean?
$>$ "Computationally hard for practical purposes, but we can't prove it"
$>$ If you find an NP-Complete problem, you can stop looking for an efficient solution

- Or figure out efficient solution for ALL NP-complete problems
\qquad

Basic Reduction Strategies	
- Reduction by simple equivalence	
- Reduction from special case to general case	
- Reduction by encoding with gadgets	
Apr8,2016	

Considering $X \leq_{p} Y$

- Need to be careful putting X in terms of Y

Make sure you're not putting an easy problem
(X) in terms of a hard problem (Y)
$>$ While you could do that, what does that do for you?
$>$ Just because Y is hard to solve does *not* mean that X is hard to solve

Vertex Cover

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$ and for each edge, at least one of its endpoints is in S ?

A vertex covers an edge.
Application: place guards within an art gallery so that all corridors are visible at any time

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

Apr 8, 2016
CSC1211 - Sprenkle \qquad

Problem

- Not known if finding Independent Set or Vertex Cover can be solved in polynomial time BUT, what can we say about their relative difficulty?

```
Vertex Cover and Independent Set
    - Claim. VERTEX-COVER }\mp@subsup{\equiv}{p}{}\mathrm{ INDEPENDENT-SET
    - Pf. We show S is an independent set iff
    V - S is a vertex cover
* 
    Let V - S be any vertex cover
    Consider two nodes u}\inS\mathrm{ and v}\in
    Observe that ( }\textrm{u},\textrm{v})\not\in\textrm{E}\mathrm{ since V - S is a vertex cover
    Thus, no two nodes in S are joined by an edge }=>\mathrm{ S
        independent set
```

 Apr 8, 2016
 CSC1211-Sprenkle

Using the Previous Result

- Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
> Polynomial number of standard computational steps, plus
> Polynomial number of calls to oracle that solves problem Y
- Assume have a black box that can solve Y

How do we show polynomial reduction for the independent set and vertex cover?
Apr 8,2016 CSCI211-Sprenkle 32

Final

- Usual rules
- Due next Friday, 5 p.m. (end of exams)
- Can use book, notes, handouts, my lecture notes, me (limited) > "The status of the P versus NP problem", Chicago Mag article > No other outside resources
Office hours:
> Monday: 10 a.m. -5 p.m.
Tuesday: 9:10 a.m. -5 p.m.
Thursday: 9:10 a.m. - 2:30 p.m.
> Appointments preferable during that time
$>$ Others by appointment
> Can email about other appointments as necessary
Evaluations due Sunday at midnight on Sakai (tests and quizzes)

