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Objec&ves	
• Algorithms	Retrospec&ve	
• Computa&onal	intractability		
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Review	
• What	is	the	power	of	the	max-flow/min-cut	
algorithm?	

• What	is	our	process	in	solving	problems	using	
network	flow?	
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Review:	Network	Flow	Solu&ons	
1.  Model	problem	as	a	flow	network	

Ø  Describe	what	nodes,	edges,	and	capacity	represent	
Ø  Describe	what	flow	represents	and	how	that	maps	to	

your	solu&on	
Ø  Run	Ford-Fulkerson	algorithm	

•  Map	back	to	original	problem	
2.  Prove	that	the	solu&on	found	is	correct/feasible/

op&mal	
3.  Prove	that	you	find	all	solu&ons	
4.  Analyze	running	&me	

Ø  Crea&ng	model	
Ø  FF	algorithm	
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Objec&ves	
• Oh,	the	places	you’ve	been!	

• Oh,	the	places	you’ll	go!	
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 Now, everything comes down to expert knowledge of 
algorithms and data structures.  If you don't speak 
fluent O-notation, you may have trouble getting your 
next job at the technology companies in the forefront.

    — Larry Freeman

Algorithm	Design	PaZerns	
• What	are	some	approaches	to	solving	problems?	
• How	do	they	compare	in	terms	of	difficulty?		
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Algorithm	Design	PaZerns	
• Greedy 		
• Divide-and-conquer	
• Dynamic	programming	
• Duality/network	flow	
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Course Objectives: Given a problem…
You’ll recognize when to try an approach

-  AND, when to bail out and try something different
Know the steps to solve the problem using the approach

- e.g., breaking it into subproblems, sorting possibilities 
in some order

Know how to analyze the run time of the solution
- e.g., solving recurrence relation
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My	Algorithms	Approach	
• Why	problems?	

• Why	wiki?	

• Research	to	support	decisions	
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Algorithm	Design	PaZerns	
• Greedy 		
• Divide-and-conquer	
• Dynamic	programming	
• Duality/network	flow	
• Reduc&ons	–	Chapter	8	
• Local	search	–	Chapter	12	
• Randomiza&on	–	Chapter	13	
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Now	you	“get”	this	xkcd	comic	
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What	Was	Our	Goal	In	Finding	a	Solu&on?	
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Polynomial Time à Efficient

POLYNOMIAL-TIME	REDUCTIONS	
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Classify	Problems	According	to	
Computa&onal	Requirements	
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Fundamental Question: �
Which problems will we be able 

to solve in practice?
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Classify	Problems	According	to	
Computa&onal	Requirements	

• Working	defini&on.	[Cobham	1964,	Edmonds	1965,	Rabin	
1966]		Those	with	polynomial-&me	algorithms.	
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Yes	 Probably	no	

Shortest	path	 Longest	path	

Min	cut	 Max	cut	

2-SAT	 3-SAT	

Matching	 3D-matching	

Primality	tes&ng	 Factoring	

Planar	4-color	 Planar	3-color	

Bipar&te	vertex	cover	 Vertex	cover	

Which problems will we be able 
to solve in practice?

Classify	Problems	
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Polynomial Exponential

Examples:
•  Given a Turing machine, does it halt�

in at most k steps?
•  Given a board position in an n-by-n 

generalization of chess, �
can black guarantee a win?

? 

Frustrating news:  �
Many problems have defied classification.

Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.

Classify problems according to those that can be 
solved in polynomial-time and those that cannot.

The	Big	Ques&on	
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NP 

P 

P ⊆ NP

NP P = NP 

P = NP

NP:  “nondeterministic polynomial time”

Are there polynomial-time 
solutions to NP problems?

In	the	mean	&me…	
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Polynomial Exponential

Examples:
•  Given a Turing machine, does it halt�

in at most k steps?
•  Given a board position in an n-by-n 

generalization of chess, �
can black guarantee a win?

? 

Frustrating news:  �
Many problems have defied classification.

Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.

Classify problems according to those that can be 
solved in polynomial-time and those that cannot.

Polynomial-Time	Reduc&on	
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Suppose we could solve Y in polynomial time. �
What else could we solve in polynomial time?

Polynomial-Time	Reduc&on	

•  Reduc&on.	Problem	X	polynomial	reduces	to	problem	Y	
if	arbitrary	instances	of	problem	X	can	be	solved	using:	
Ø  Polynomial	number	of	standard	computa&onal	steps,	plus	
Ø  Polynomial	number	of	calls	to	oracle	that	solves	problem	Y	

•  Assume	have	a	black	box	that	can	solve	Y	

• Nota&on:	X	≤P	Y	
Ø “X	is	polynomial-&me	reducible	to	Y”	

• Conclusion:	If	Y	can	be	solved	in	polynomial	&me	
and	X	≤P	Y,	then	X	can	be	solved	in	polynomial	&me.	
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Suppose we could solve Y in polynomial-time. �
What else could we solve in polynomial time?

Y For X + 
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Fun	Fact:	Connec&ng	Chapters	7	and	8		
• Karp	

Ø of	the	Edmonds-Karp	algorithm	(max-flow	problem	
on	networks)	

Ø published	a	paper	in	complexity	theory	on	
"Reducibility	Among	Combinatorial	Problems”	
• proved	21	Problems	to	be	NP-complete	
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NP-Complete	Problems	
•  Problems	from	many	different	domains	whose	complexity	is	

unknown	

•  NP-completeness	and	proof	that	all	problems	are	equivalent	
is	POWERFUL!	
Ø All	open	complexity	ques&ons	è	ONE	open	ques&on!	

•  What	does	this	mean?	
Ø  “Computa&onally	hard	for	prac&cal	purposes,	but	we	can’t	

prove	it”	
Ø  If	you	find	an	NP-Complete	problem,	you	can	stop	looking	for	

an	efficient	solu&on	
•  Or	figure	out	efficient	solu&on	for	ALL	NP-complete	problems	

Apr	8,	2016	 CSCI211	-	Sprenkle	 20	

Polynomial-Time	Reduc&on	
• Purpose.		Classify	problems	according	to	rela3ve	
difficulty.	

• Design	algorithms.		If	X	≤P	Y	and	Y	can	be	solved	
in	polynomial-&me,	then	X	can	also	be	solved	in	
polynomial	&me.	

• Establish	intractability.		If	X	≤P	Y	and	X	cannot	be	
solved	in	polynomial-&me,	then	Y	cannot	be	
solved	in	polynomial	&me.	

• Establish	equivalence.		If	X	≤P	Y	and	Y	≤P	X,	we	
use	nota&on	X	≡P	Y.	
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Considering	X	≤P	Y	
• Need	to	be	careful	puvng	X	in	terms	of	Y	
• Make	sure	you’re	not	puvng	an	easy	problem	
(X)	in	terms	of	a	hard	problem	(Y)	
Ø While	you	could	do	that,	what	does	that	do	for	you?	
Ø Just	because	Y	is	hard	to	solve	does	*not*	mean	that	
X	is	hard	to	solve	
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Basic	Reduc&on	Strategies	
• Reduc3on	by	simple	equivalence	
• Reduc&on	from	special	case	to	general	case	
• Reduc&on	by	encoding	with	gadgets	
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Independent	Set	
• Given	a	graph	G	=	(V,	E)	and	an	integer	k,	is	there	a	
subset	of	ver&ces	S	⊆	V	such	that	|S|	≥	k	and	for	
each	edge	at	most	one	of	its	endpoints	is	in	S?	
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Ex.  Is there an independent set of 
size ≥ 6?

Ex.  Is there an independent set of 
size ≥ 7? 

How is this different from 
the network flow problem?
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Independent	Set	
• Given	a	graph	G	=	(V,	E)	and	an	integer	k,	is	there	a	
subset	of	ver&ces	S	⊆	V	such	that	|S|	≥	k	and	for	
each	edge	at	most	one	of	its	endpoints	is	in	S?	
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Ex.  Is there an independent set of 
size ≥ 6? Yes

Ex.  Is there an independent set of 
size ≥ 7? No 

Vertex	Cover	
• Given	a	graph	G	=	(V,	E)	and	an	integer	k,	is	there	a	
subset	of	ver&ces	S	⊆	V	such	that	|S|	≤	k	and	for	
each	edge,	at	least	one	of	its	endpoints	is	in	S?	
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Ex.  Is there a vertex cover of 

size ≤ 4?
Ex.  Is there a vertex cover of 

size ≤ 3?

A vertex covers an edge.

Application: place guards within an 
art gallery so that all corridors are 
visible at any time 

Vertex	Cover	
• Given	a	graph	G	=	(V,	E)	and	an	integer	k,	is	there	a	
subset	of	ver&ces	S	⊆	V	such	that	|S|	≤	k	and	for	
each	edge,	at	least	one	of	its	endpoints	is	in	S?	
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vertex cover

Ex.  Is there a vertex cover of 
size ≤ 4? Yes

Ex.  Is there a vertex cover of 
size ≤ 3? No

Problem	
• Not	known	if	finding	Independent	Set	or	Vertex	
Cover	can	be	solved	in	polynomial	&me	

• BUT,	what	can	we	say	about	their	rela&ve	
difficulty?		
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Vertex	Cover	and	Independent	Set	
• Claim.	VERTEX-COVER	≡P	INDEPENDENT-SET	
• Pf.		We	show	S	is	an	independent	set	iff		
V	-	S	is	a	vertex	cover	
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vertex cover

independent set

Vertex	Cover	and	Independent	Set	
• Claim.	VERTEX-COVER	≡P	INDEPENDENT-SET	
• Pf.		We	show	S	is	an	independent	set	iff		
V	-	S	is	a	vertex	cover	

• ⇒	
Ø Let	S	be	an	independent	set	
Ø Consider	an	arbitrary	edge	(u,	v)	
Ø Since	S	is	an	independent	set	⇒	u	∉	S	or	v	∉	S	or	both	∉	
S			⇒		u	∈	V	-	S	or	v	∈	V	-	S	or	both	∈	V	-	S	

Ø Thus,	V	-	S	covers	(u,	v)	
•  Every	edge	has	at	least	one	end	in	V-S	

Ø V-S	is	a	vertex	cover	

Apr	8,	2016	 CSCI211	-	Sprenkle	 30	



4/8/16

6

Vertex	Cover	and	Independent	Set	
• Claim.	VERTEX-COVER	≡P	INDEPENDENT-SET	
• Pf.		We	show	S	is	an	independent	set	iff		
V	-	S	is	a	vertex	cover	

• ⇐		
Ø Let	V	-	S	be	any	vertex	cover	
Ø Consider	two	nodes	u	∈	S	and	v	∈	S	
Ø Observe	that	(u,	v)	∉	E	since	V	-	S	is	a	vertex	cover	
Ø Thus,	no	two	nodes	in	S	are	joined	by	an	edge		⇒	S	
independent	set	
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Using	the	Previous	Result	
• Problem	X	polynomial	reduces	to	problem	Y	if	
arbitrary	instances	of	problem	X	can	be	solved	
using:	
Ø Polynomial	number	of	standard	computa&onal	steps,	
plus	

Ø Polynomial	number	of	calls	to	oracle	that	solves	problem	
Y	
• Assume	have	a	black	box	that	can	solve	Y	
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How do we show polynomial reduction �
for the independent set and vertex cover?

Summary	
•  If	we	have	a	block	box	to	solve	Vertex	Cover,	can	
decide	whether	G	has	an	independent	set	of	size	
at	least	k	by	asking	the	black	box	whether	G	has	
a	vertex	cover	of	size	at	most	n	–	k	

•  If	we	have	a	block	box	to	solve	Independent	Set,	
can	decide	whether	G	has	a	vertex	cover	of	size	
at	most	k	by	asking	the	block	box	whether	G	has	
an	independent	set	of	size	at	least	n	-	k	
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Final	
•  Usual	rules	
•  Due	next	Friday,	5	p.m.	(end	of	exams)	
•  Can	use	book,	notes,	handouts,	my	lecture	notes,	me	(limited)	

Ø  “The	status	of	the	P	versus	NP	problem”,	Chicago	Mag	ar&cle	
Ø  No	other	outside	resources	

•  Office	hours:		
Ø  Monday:	10	a.m.–	5	p.m.	
Ø  Tuesday:	9:10	a.m.	–	5	p.m.	
Ø  Thursday:	9:10	a.m.	–	2:30	p.m.	
Ø  Appointments	preferable	during	that	&me	
Ø  Others	by	appointment	
Ø  Can	email	about	other	appointments	as	necessary	

•  Evalua&ons	due	Sunday	at	midnight	on	Sakai	(tests	and	
quizzes)	
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