
1/31/18

1

Objec&ves	
• Finding	Connected	Components	

Ø Breadth-first	
Ø Depth-first	

•  Implemen&ng	the	algorithms	

Jan	31,	2018	 1	CSCI211	-	Sprenkle	

Review:	Graphs	
• What	are	the	two	ways	to	represent	graphs?	
• What	is	the	space	cost	for	the	adjacency	list?	

Jan	31,	2018	 CSCI211	-	Sprenkle	 2	



1/31/18

2

Review:	Connected	Component	
• Find	all	nodes	reachable	from	s	

	

• Theorem.		Upon	termina&on,	R	is	the	connected	
component	containing	s	

Jan	31,	2018	 CSCI211	-	Sprenkle	 3	

In general….
R will consist of nodes to which s has a path
R = {s}
while there is an edge (u,v) where u∈R and v∉R

add v to R

How can we explore the nodes?

Finding	Connected	Components	
• Find	all	nodes	reachable	from	s	

	

Jan	31,	2018	 CSCI211	-	Sprenkle	 4	

In general….
R will consist of nodes to which s has a path
R = {s}
while there is an edge (u,v) where u∈R and v∉R

add v to R

In what order does BFS consider edges?
What is the outcome?



1/31/18

3

Review:	Example	of	Breadth-First	Search	

Jan	29,	2018	 CSCI211	-	Sprenkle	 5	

L0

L1

L2

L3

s = 1 

Creates a tree
-- is a node in the graph that is not in the tree

Review:	Breadth-First	Search	
• Intui&on.		Explore	outward	from	s	in	all	possible	
direc&ons	(edges),	adding	nodes	one	"layer"	at	a	
&me	

• Algorithm		
Ø L0	=	{	s	}	
Ø L1	=	all	neighbors	of	L0	
Ø L2	=	all	nodes	that	have	an	edge	to	a	node	in	L1	and	
do	not	belong	to	L0	or	L1	

Ø Li+1	=	all	nodes	that	have	an	edge	to	a	node	in	Li	and	
do	not	belong	to	an	earlier	layer	

Jan	31,	2018	 CSCI211	-	Sprenkle	 6	

s L1 L2 L n-1

L0



1/31/18

4

Breadth-First	Search	
• Theorem.			
For	each	i,	Li	consists	of	all	nodes	at	distance	
exactly	i	from	s.		
There	is	a	path	from	s	to	t	iff	t	appears	in	some	
layer.	

Jan	31,	2018	 CSCI211	-	Sprenkle	 7	

s L1 L2 L n-1

• What does this theorem mean?

• Can we determine the distance between s and t?

Breadth-First	Search	
• Theorem.		For	each	i,	Li	consists	of	all	nodes	at	
distance	exactly	i	from	s.		There	is	a	path	from	s	
to	t	iff	t	appears	in	some	layer.	
Ø Shortest	path	to	t	from	s	is	the	i	from	Li	that	t	is	in	
Ø All	nodes	reachable	from	s	are	in	L1,	L2,	…,	Ln-1	

Jan	31,	2018	 CSCI211	-	Sprenkle	 8	

s L1 L2 L n-1



1/31/18

5

Breadth-First	Search	
• Property.		Let	T	be	a	BFS	tree	of	G	=	(V,	E),	and	
let	(x,	y)	be	an	edge	of	G.	Then	the	level	of	x	and	
y	differ	by	at	most	1.	

Jan	31,	2018	 CSCI211	-	Sprenkle	 9	

G: 
If x is in Li, �

then y must be in ???

Breadth-First	Search	
• Property.		Let	T	be	a	BFS	tree	of	G	=	(V,	E),	and	
let	(x,	y)	be	an	edge	of	G.	Then	the	level	of	x	and	
y	differ	by	at	most	1.	

Jan	31,	2018	 CSCI211	-	Sprenkle	 10	

G: 

If x is in Li, �
then y must be in

•  Li-1: y was reached before x
•  Li: a common parent of x 

and y was reached first
•  Li+1: y will be added in the 

next layer



1/31/18

6

Connected	Component:	BFS	vs	DFS	
• Find	all	nodes	reachable	from	s	

	

• Theorem.		Upon	termina&on,	R	is	the	connected	
component	containing	s	
Ø BFS	=	explore	in	order	of	distance	from	s	
Ø DFS	=	explore	un&l	hit	“deadend”	

Jan	31,	2018	 CSCI211	-	Sprenkle	 11	

In general….
R will consist of nodes to which s has a path
R = {s}
while there is an edge (u,v) where u∈R and v∉R

add v to R

Depth-First	Search	
• Need	to	keep	track	of	where	you’ve	
been	

• When	reach	a	“dead-end”	(already	
explored	all	neighbors),	backtrack	to	
node	with	unexplored	neighbor	

• Algorithm:	

Jan	31,	2018	 CSCI211	-	Sprenkle	

DFS(u):
Mark u as “Explored” and add u to R
For each edge (u, v) incident to u

If v is not marked “Explored” then
DFS(v)

12	



1/31/18

7

Depth-First	Search	
• How	does	DFS	work	on	this	graph?	

Ø Star&ng	from	node	1	

Jan	31,	2018	 CSCI211	-	Sprenkle	 13	

DFS	vs	BFS	
• Compare	the	resul&ng	trees	

Jan	31,	2018	 CSCI211	-	Sprenkle	 14	



1/31/18

8

DFS	vs	BFS:	Tree	Comparison	
•  BFS	

Ø  Bushy	
•  DFS	

Ø  Spindly	

Jan	31,	2018	 CSCI211	-	Sprenkle	 15	

DFS	Analysis	
• Let	T	be	a	depth-first	search	tree,	let	x	and	y	be	
nodes	in	T,	and	let	(x,	y)	be	an	edge	of	G	that	is	
not	an	edge	of	T.		Then	one	of	x	or	y	is	an	
ancestor	of	the	other	in	T.			

Jan	31,	2018	 CSCI211	-	Sprenkle	 16	

parallel of BFS: connected nodes are at most one layer apart



1/31/18

9

DFS	Analysis	
•  Let	T	be	a	depth-first	search	tree,	let	x	and	y	be	
nodes	in	T,	and	let	(x,	y)	be	an	edge	of	G	that	is	not	
an	edge	of	T.		Then	one	of	x	or	y	is	an	ancestor	of	
the	other	in	T.		

• Proof.			
Ø Suppose	that	x-y	is	an	edge	in	G	but	not	in	T.		(From	
problem	statement)	

Ø WLOG,	assume	that	DFS	reaches	x	before	y	
Ø When	edge	x-y	is	considered	in	the	DFS	algorithm,	we	
don’t	add	it	to	T	(from	problem	statement),	which	means	
that	y	must	have	been	explored.	

Ø But,	since	we	reached	x	first,	y	had	to	be	discovered	
between	invoca&on	and	end	of	the	recursive	call	DFS(x)	
•  i.e.,	y	is	a	descendent	of	x	

Jan	31,	2018	 CSCI211	-	Sprenkle	 17	

IMPLEMENTING	ALGORITHMS	

Jan	31,	2018	 CSCI211	-	Sprenkle	 18	



1/31/18

10

Review:	Breadth-First	Search	
• Intui&on.		Explore	outward	from	s	in	all	possible	
direc&ons	(edges),	adding	nodes	one	"layer"	at	a	
&me	

• Algorithm		
Ø L0	=	{	s	}	
Ø L1	=	all	neighbors	of	L0	
Ø L2	=	all	nodes	that	have	an	edge	to	a	node	in	L1	and	
do	not	belong	to	L0	or	L1	

Ø Li+1	=	all	nodes	that	have	an	edge	to	a	node	in	Li	and	
do	not	belong	to	an	earlier	layer	

Jan	31,	2018	 CSCI211	-	Sprenkle	 19	

s L1 L2 L n-1

L0

Implemen&ng	BFS	
• What	do	we	need	as	input?	
• What	do	we	need	to	model?	

Ø How	will	we	model	that?	

Jan	31,	2018	 CSCI211	-	Sprenkle	 20	



1/31/18

11

Implemen&ng	BFS	
•  Input:	Graph	as	an	adjacency	list	
• Discovered	array	
• Maintain	layers	in	separate	lists,	L[i]	

Jan	31,	2018	 CSCI211	-	Sprenkle	 21	

Implemen&ng	BFS	
•  Graph:	Adjacency	list	
•  Discovered	array	
•  Maintain	layers	L[i]	

Jan	31,	2018	 CSCI211	-	Sprenkle	

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
for each node u ∈ L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

L[i] 
representation?

22	

What does this 
stopping condition 

mean?



1/31/18

12

BFS	Analysis	

Jan	31,	2018	 CSCI211	-	Sprenkle	 23	

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u ∈ L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

•  L[i] representation?  List, queue, or stack�
- Doesn’t matter because algorithm can consider nodes in any order

What is the running time?

Given: s – start node,  G – adjacency list 

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u ∈ L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis	

Jan	31,	2018	 CSCI211	-	Sprenkle	

A
t 

m
os

t 
n

A
t 

m
os

t 
n-

1

O(n3)

n

24	

A
t 

m
os

t 
n-

1



1/31/18

13

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u ∈ L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis:	Tighter	Bound	

Jan	31,	2018	 CSCI211	-	Sprenkle	

A
t 

m
os

t 
nO(n2)

n

25	

A
t 

m
os

t 
n-

1

Because we’re going to look at each node at most once

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u ∈ L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis:	Even	Tighter	Bound	

Jan	31,	2018	 CSCI211	-	Sprenkle	

O(deg(u))

A
t 

m
os

t 
n

n

à O(n+m)
26	

Σu∈V deg(u) = 2m



1/31/18

14

Looking	Ahead	
• PS3	due	Friday	

Jan	31,	2018	 CSCI211	-	Sprenkle	 27	


