Objectives

Finding Connected Components
Breadth-first
Depth-first

Implementing the algorithms

Jan 31, 2018 CSCI211 - Sprenkle

Review: Graphs

What are the two ways to represent graphs?
What is the space cost for the adjacency list?

Jan 31, 2018 CSCI211 - Sprenkle

1/31/18

Review: Connected Component

Find all nodes reachable from s

In general....
R will consist of nodes to which s has a path

R = {s}
while there is an edge (u,v) where ueR and vdR
add v to R

Theorem. Upon termination, R is the connected
component containing s

How can we explore the nodes?

Jan 31, 2018 CSCI211 - Sprenkle 3

Finding Connected Components

Find all nodes reachable from s

In general....
R will consist of nodes to which s has a path

R = {s}
while there is an edge (u,v) where ueR and véR
add v to R

In what order does BFS consider edges?
What is the outcome?

Jan 31, 2018 CSCI211 - Sprenkle 4

1/31/18

Review: Example of Breadth-First Search

Creates a tree
-- is a node in the graph that is not in the tree

Jan 29, 2018 CSCI211 - Sprenkle 5

Review: Breadth-First Search

Intuition. Explore outward from s in all possible
directions (edges), adding nodes one "layer" at a
time

Algorithm 10=° @
7 Ly={s}

» L, = all neighbors of L,

» L, = all nodes that have an edge to a node in L, and
do not belong to Ly or L;

» L, = all nodes that have an edge to a node in L, and
do not belong to an earlier layer

Jan 31,2018 CSCI211 - Sprenkle 6

1/31/18

Breadth-First Search

Theorem.

For each i, L, consists of all nodes at distance
exactly i from s.

There is a path from s to t iff t appears in some

* What does this theorem mean?

e Can we determine the distance between s and t?

Jan 31, 2018 CSCI211 - Sprenkle 7

Breadth-First Search

Theorem. For each j, L, consists of all nodes at
distance exactly i from s. There is a path from s
to t iff t appears in some layer.

Shortest path to t from s is the i from L, that tis in
All nodes reachable from s arein L, L,, ..

-8

Jan 31, 2018 CSCI211 - Sprenkle 8

B

1/31/18

Breadth-First Search

Property. Let T be a BFS tree of G =(V, E), and
let (x, y) be an edge of G. Then the level of x and
y differ by at most 1.

(@
) e‘e If x is in L,
G: " then y must be in ?2?
O—E ©
©

Jan 31, 2018 CSCI211 - Sprenkle 9

Breadth-First Search

Property. Let T be a BFS tree of G =(V, E), and
let (x, y) be an edge of G. Then the level of x and
y differ by at most 1.

If xisinlL,
a (7 then y must be in
* L,y was reached before x
G: a'o‘ ¢ L;:a common parent of x
O—C © and y was reached first
(s) * L;.4:y will be added in the
next layer

Jan 31, 2018 CSCI211 - Sprenkle 10

1/31/18

Connected Component: BFS vs DFS

Find all nodes reachable from s

In general....

R will consist of nodes to which s has a path

R = {s}

while there is an edge (u,v) where ueR and vdR
add v to R

Theorem. Upon termination, R is the connected
component containing s

BFS = explore in order of distance from s

DFS = explore until hit “deadend”

Jan 31, 2018 CSCI211 - Sprenkle 11

Depth-First Search eae‘o
Need to keep track of where you've e‘o)
been ©

When reach a “dead-end” (already
explored all neighbors), backtrack to
node with unexplored neighbor

Algorithm:

DFSCu):
Mark u as “Explored” and add u to R
For each edge (u, v) incident to u
If v is not marked “Explored” then
DFS(v)

Jan 31, 2018 CSCI211 - Sprenkle 12

1/31/18

Depth-First Search

How does DFS work on this graph?
Starting from node 1

ONNG
(N
(0
oo ‘e

Jan 31, 2018 CSCI211 - Sprenkle

13

DFS vs BFS

Compare the resulting trees

Jan 31, 2018 CSCI211 - Sprenkle

14

1/31/18

DFS vs BFS: Tree Comparison

BFS DFS
Bushy Spindly
OO
fawal
O—E ©
©
Jan 31, 2018 CSCI211 - Sprenkle 15
DFS Analysis

Let T be a depth-first search tree, let x and y be
nodes in T, and let (x, y) be an edge of G that is
not an edge of T. Then one of x or y is an
ancestor of the other in T.

parallel of BFS: connected nodes are at most one layer apart

Jan 31,2018 CSCI211 - Sprenkle 16

1/31/18

DFS Analysis

Let T be a depth-first search tree, let x and y be
nodes in T, and let (x, y) be an edge of G that is not
an edge of T. Then one of x or y is an ancestor of

the otherin T.

Proof.

» Suppose that x-y is an edge in G but not in T. (From
problem statement)

» WLOG, assume that DFS reaches x before y

» When edge x-y is considered in the DFS algorithm, we
don’t add it to T (from problem statement), which means
that y must have been explored.

» But, since we reached x first, y had to be discovered
between invocation and end of the recursive call DFS(x)

i.e., yis a descendent of x

Jan 31, 2018 CSCI211 - Sprenkle 17

IMPLEMENTING ALGORITHMS

Jan 31, 2018 CSCI211 - Sprenkle 18

1/31/18

Review: Breadth-First Search

Intuition. Explore outward from s in all possible
directions (edges), adding nodes one "layer" at a
time
Algorithm - - 4B
Ly = {s}
L, = all neighbors of L,
L, = all nodes that have an edge to a node in L, and
do not belong to L, or L,

L.,, = all nodes that have an edge to a node in L, and
do not belong to an earlier layer

Jan 31, 2018 CSCI211 - Sprenkle 19

Implementing BFS

What do we need as input?

What do we need to model?
How will we model that?

Jan 31, 2018 CSCI211 - Sprenkle 20

1/31/18

Implementing BFS

Input: Graph as an adjacency list
Discovered array
Maintain layers in separate lists, L[i]

Jan 31, 2018 CSCI211 - Sprenkle

21

Implementing BFS

Graph: Adjacency list
Discovered array
Maintain layers L[i]

BFS(s, G):

Discovered[s] = true

Discovered[v] = false, for all v

L[o] = {s}
layer counter i = 0
; BFS tree T = {}
VthtdoesthF _ e L] e
stopping condition —> L[i+1] = {}
mean? for each node u € L[1i]
Consider each edge (u,v) incident to u
if Discovered[v] == false then
L[i] Discovered[v] = true
. Add edge (u, v) to tree T
? 5
representation” Add v to the list L[i + 1]
i+=1

Jan 31, 2018 CSCI211 - Sprenkle

22

1/31/18

BFS Analysis

Given: s — start node, G — adjacency list

i+=1

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}

layer counter i = 0

BFS tree T = {}

while L[i] !'= {}
L[i+1] = {3}

For each node u € L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then
Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

L[i] representation? List, queue, or stack

- Doesn’t matter because algorithm can consider nodes in any order

Jan 31, 2018

csci11-sprenkte | YVhat is the running time?

Analysis

BFS(s, G):
Discovered[v] = false, for all v
n Discovered[s] = true
L[] = {s}

layer counter i = @
BFS tree T = {}

7~ while L[1i] !'= {3
L[i+1] = {3
For each node u € L[1i]
S - 'E Qons@der each edge (u,v) incident to u
o(n®) 8 < & o if Dl'scover'ed[v] == false then
£ b3 0 Discovered[v] = true
2 g g Add edge (u, v) to tree T
s ;E Add v to the list L[1i + 1]
< 1+=
< <
Jan 31, 2018 CSCI211 - Sprenkle

24

1/31/18

1/31/18

Analysis: Tighter Bound

BFS(s, G):
Discovered[Vv]
Discovered[s]
L[e] = {s}
layer counter i = 0
BFS tree T = {}

7~ while L[i] !'= {}

L[i+1] = {3

o(n?) For each node u € L[i]

Consider each edge (u,v) incident to u

if Discovered[v] == false then
Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

false, for all v
true

v
At most n
A

I S

Because we're going to look at each node at most once

+At most n-|

Jan 31, 2018 CSCI211 - Sprenkle 25

Analysis: Even Tighter Bound

BFS(s, G):
Discovered[v] = false, for all v
n Discovered[s] = true
L[@] = {s}

layer counter i = 0
BFS tree T = {}

while L[i] !'= {} O(deg(u))
L[i+1] = {3}
For each node u € L[i]
E Qons@der each edge (u,v) incident to u
s 4 =) a if Discovered[v] == false then
uev deg(u) =2m 8 < Discovered[v] = true
;E Add edge (u, v) to tree T
Add v to the 1list L[i + 1]
i+=1
= O(n+m)
Jan 31, 2018 €SCI211 - Sprenkle 26

Looking Ahead
PS3 due Friday

Jan 31, 2018

CSCI211 - Sprenkle

27

1/31/18

