Objectives

- Wrap up: Implementing BFS and DFS
- Graph Application: Bipartite Graphs

Get out your BFS implementation handouts

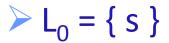
Review

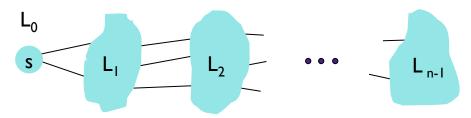
- What are two ways to find a connected component?
 - > How are their results similar? Different?

Review: Breadth-First Search

 Intuition. Explore outward from s in all possible directions (edges), adding nodes one "layer" at a time

Algorithm





- $ightharpoonup L_1$ = all neighbors of L_0
- L₂ = all nodes that have an edge to a node in L₁ and do not belong to L₀ or L₁
- $ightharpoonup L_{i+1}$ = all nodes that have an edge to a node in L_i and do not belong to an earlier layer

Analysis

```
BFS(s, G):
                Discovered[v] = false, for all v
        n
                Discovered[s] = true
                L[0] = \{s\}
                layer counter i = 0
                BFS tree T = \{\}
                while L[i] != {}
                    L[i+1] = \{\}
                    For each node u \in L[i]
                        Consider each edge (u,v) incident to u
         At most n
                        if Discovered[v] == false then
O(n^3)
                            Discovered[v] = true
                            Add edge (u, v) to tree T
                            Add v to the list L[i + 1]
```

Analysis: Tighter Bound

```
BFS(s, G):
       Discovered[v] = false, for all v
n
       Discovered[s] = true
       L[0] = \{s\}
       layer counter i = 0
       BFS tree T = \{\}
       while L[i] != {}
           L[i+1] = \{\}
           For each node u \in L[i]
                Consider each edge (u,v) incident to u
                if Discovered[v] == false then
                   Discovered[v] = true
                   Add edge (u, v) to tree T
                   Add v to the list L[i + 1]
```

Because we're going to look at each node at most once

Analysis: Even Tighter Bound

```
BFS(s, G):
                          Discovered[v] = false, for all v
Discovered[s] = true
                  n
                          L[0] = \{s\}
                          layer counter i = 0
                          BFS tree T = \{\}
                          'while L[i] != {}
                                                             O(deg(u))
                               L[i+1] = \{\}
                               For each node u \in L[i]
                                    Consider each edge (u,v) incident to u
                                    if Discovered[v] == false then
\Sigma_{u \in V} \deg(u) = 2m
                                       Discovered[v] = true
                                       Add edge (u, v) to tree T
                                       Add v to the list L[i + 1]
                               i+=1
```

$$\rightarrow$$
 O(n+m)

Implementing DFS

- What do we need as input?
- What do we need to model?
 - > How will we model that?
 - > Pseudo code

```
DFS(u):

Mark u as "Explored" and add u to R

For each edge (u, v) incident to u

If v is not marked "Explored" then

DFS(v)
```

Implementing DFS

Keep nodes to be processed in a stack

```
DFS(s, G):
    Initialize S to be a stack with one element s
    Explored[v] = false, for all v
    Parent[v] = 0, for all v
    DFS tree T = {}
    while S != {}
        Take a node u from S
        if Explored[u] = false
            Explored[u] = true
        Add edge (u, Parent[u]) to T (if u ≠ s)
        for each edge (u, v) incident to u
        Add v to the stack S
        Parent[v] = u
```

What is the runtime?

How many times is a node added/removed from the stack?

Jan 31, 2018

CSCIZII - Sprenkie

Analyzing DFS

O(n+m)

A node is added/removed from the stack 2^* deg(u) All nodes are added 2m = O(m) times

Jan 21, 2010

COCIZII - OPICIINIO

Analyzing Finding All Connected Components

 How can we find the set of all connected components of the graph?

```
R* = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*

R = {s}

while there is an edge (u,v) where u∈R and v∉R

add v to R

But the inner loop is O(m+n)!

How can this RT be possible?
```

Claim: Running time is O(m+n)

Set of All Connected Components

 How can we find the set of all connected components of the graph?

```
R^* = set of connected components (a set of sets)
while there is a node that does not belong to R*
     select s not in R*
                                                     Imprecision in the running time
     R = \{s\}
                                                         of inner loop: O(m+n)
     while there is an edge (u,v) where u \in R and v \notin R
         add v to R
                                                       But that's m and n of the
                                                       connected component,
     Add R to R*
                                                       let's say m<sub>i</sub> and n<sub>i</sub>.
                                                          \Sigma_i O(m_i + n_i) = O(m + n)
                      Where i is the subscript of the
                          connected component
```

CSCI211 - Sprenkle

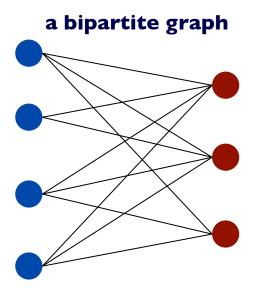
11

Jan 31, 2018

BIPARTITE GRAPHS

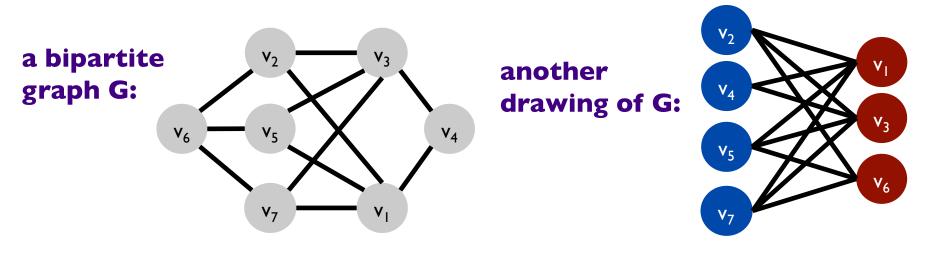
Bipartite Graphs

- Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end
 - Generally: vertices divided into sets X and Y
- Applications:
 - > Stable marriage:
 - men = red, women = blue
 - Scheduling:
 - machines = red, jobs = blue



Testing Bipartiteness

- Given a graph G, is it bipartite?
- Many graph problems become:
 - Easier if underlying graph is bipartite (e.g., matching)
 - Tractable if underlying graph is bipartite (e.g., independent set)
- Before designing an algorithm, need to understand structure of bipartite graphs

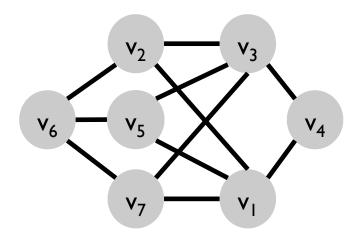


How Can We Determine if a Graph is Bipartite?

Given a connected graph

Why connected?

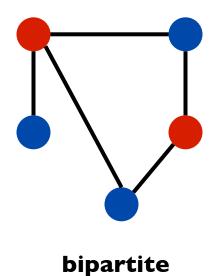
- 1. Color one node red
 - Doesn't matter which color (Why?)
- What should we do next?



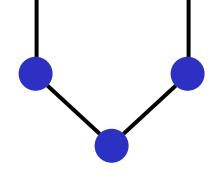
- How will we know when we're finished?
- What does this process sound like?

An Obstruction to Bipartiteness

• Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.



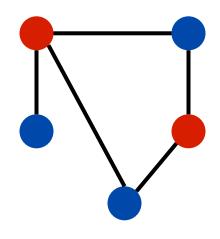
(2-colorable)



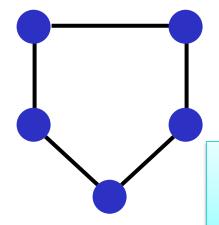
not bipartite (not 2-colorable)

An Obstruction to Bipartiteness

- Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.
- Pf. Not possible to 2-color the odd cycle, let alone G.



bipartite (2-colorable)



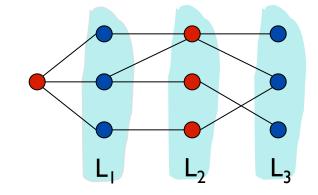
If find an odd cycle, graph is NOT bipartite

not bipartite (not 2-colorable)

How Can We Determine if a Graph is Bipartite?

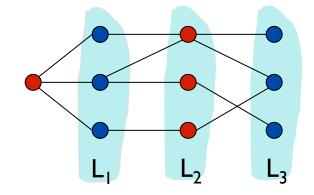
- Given a connected graph
 - Color one node red
 - Doesn't matter which color (Why?)
 - What should we do next?
- How will we know that we're finished?
- What does this process sound like?
 - > BFS: alternating colors, layers

How can we implement the algorithm?



Implementing Algorithm

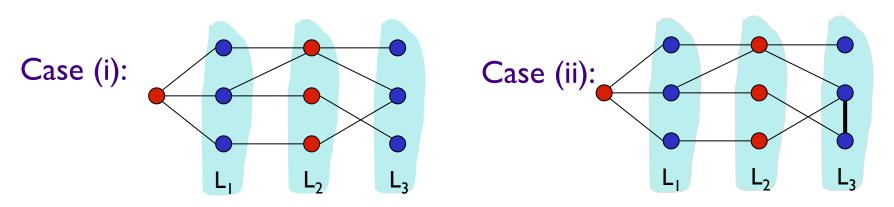
- Modify BFS to have a Color array
- When add v to list L[i+1]
 - Color[v] = red if i+1 is even
 - Color[v] = blue if i+1 is odd



What is the running time of this algorithm? O(n+m)

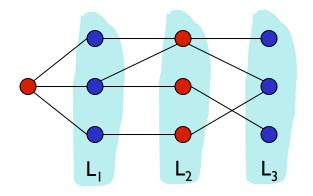
Marks a change in how we think about algorithms
Starting to apply known algorithms to solve new problems

- Lemma. Let G be a connected graph, and let L₀, ...,
 L_k be the layers produced by BFS starting at node s.
 Exactly one of the following holds:
 - > (i) No edge of G joins two nodes of the same layer
 - G is bipartite
 - > (ii) An edge of G joins two nodes of the same layer
 - G contains an odd-length cycle and hence is not bipartite

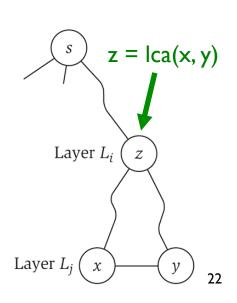


Jan 31, 2018 CSCI211 - Sprenkle 20

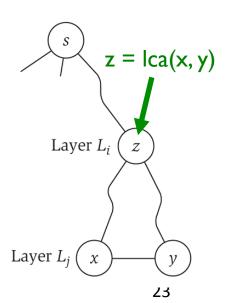
- Lemma. Let G be a connected graph, and let L₀, ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds:
 - > (i) No edge of G joins two nodes of the same layer
 - G is bipartite
- Pf. (i)
 - Suppose no edge joins two nodes in the same layer
 - Implies all edges join nodes on adjacent level
 - Bipartition
 - red = nodes on odd levels
 - blue = nodes on even levels



- Lemma. Let G be a connected graph, and let L₀, ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds:
 - (ii) An edge of G joins two nodes of the same layer →
 G contains an odd-length cycle and hence is not bipartite
- Pf. (ii)
 - Suppose (x, y) is an edge with x, y in same level L_i.
 - \triangleright Let z = lca(x, y) = lowest common ancestor
 - Let L_i be level containing z
 - \rightarrow Consider cycle that takes edge from x to y, then path y \rightarrow z, then path from z \rightarrow x

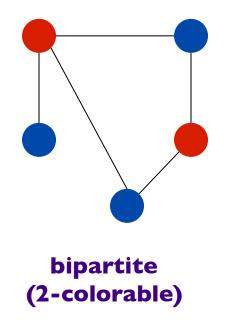


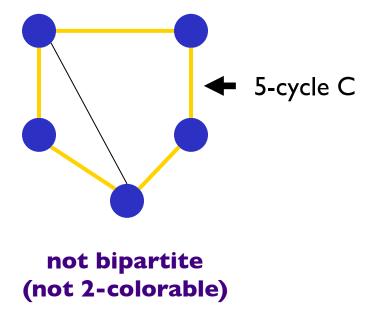
- Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds:
 - \rightarrow (ii) An edge of G joins two nodes of the same layer \rightarrow G contains an odd-length cycle and hence is not bipartite
- Pf. (ii)
 - Suppose (x, y) is an edge with x, y in same level
 - \triangleright Let z = lca(x, y)=lowest common ancestor
 - Let L_i be level containing z
 - Consider cycle that takes edge from x to y, then path $y \rightarrow z$, then path $z \rightarrow x$
 - Its length is 1 + (j-i) + (j-i), which is odd path from path from CSCI211 - Sprenkle



An Obstruction to Bipartiteness

 Corollary. A graph G is bipartite iff it contains no odd length cycle.





Looking Ahead

Goal: Finish graphs before Exam 1

- Wiki: 3.2-3.6
 - Covered in class: 3.2-3.4
 - > Expected: 3.5-3.6 on Monday
 - Willing to push wiki to Tuesday at 11:59 p.m.
- PS 4 due Friday
 - First two problems know how to do now
 - Second two problems should wait until after Monday's class