Objectives

Wrap up: Implementing BFS and DFS
Graph Application: Bipartite Graphs

Get out your BFS implementation handouts

Feb 2, 2018 CSCI211 - Sprenkle

Review

What are two ways to find a connected
component?

How are their results similar? Different?

Feb 2, 2018 CSCI211 - Sprenkle

Review: Breadth-First Search

Intuition. Explore outward from s in all possible
directions (edges), adding nodes one "layer" at a
time

Algorithm -y == RNy
Lo = { S }
L, = all neighbors of L,

L, = all nodes that have an edge to a node in L, and
do not belong to L, or L,

L., = all nodes that have an edge to a node in L, and
do not belong to an earlier layer

Jan 31, 2018 CSCI211 - Sprenkle 3

Analysis

BFS(s, G):
Discovered[V]
Discovered[s]
L[O] = {s}
layer counter 1 = 0
BFS tree T = {}
while L[1] '= {}

L[i+1] = {}

For each node u € L[1]

= [Consider each edge (u,v) incident to u
1f Discovered[v] == false then

Discovered[v] = true

Add edge (u, v) to tree T

Add v to the 1ist L[1 + 1]

false, for all v
true

O(nd)

At most n

~At most n

At most n-1

Jan 31, 2018 CSCI211 - Sprenkle

Analysis: Tighter Bound

BFS(s, G):
Discovered[v] = false, for all v
n Discovered[s] = true
L[O] = {s}

layer counter 1 = 0
BFS tree T = {}
while L[1] !'= {}

L[i+1] = {3
()Og) For each node u € L[1]
c = [Consider each edge (u,v) incident to u
§ S | if Discovered[v] == false then
= 8 Discovered[v] = true
2 - Add edge (u, v) to tree T
;E Add v to the 1ist L[1 + 1]
1+=

Because we'’re going to look at each node at most once

Jan 31, 2018 CSCI211 - Sprenkle

Analysis: Even Tighter Bound

2 cvdeg(u) = 2m

At most n

Jan 31, 2018

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[@] = {s}

layer counter 1 = 0
BFS tree T = {}
while L[i] != {} O(deg(u
rild - 3 (deg(u))
For each node u € L[1]
Consider each edge (u,v) incident to u
1f Discovered[v] == false then
Discovered[v] = true
Add edge (u, v) to tree T
Add v to the 1list L[1 + 1]
1+=1

- O(n+m)

CSCI211 - Sprenkle

Implementing DFS

What do we need as input?

What do we need to model?

How will we model that?

Ps

eudo code

DFSCu):
Mark u as “Explored” and add u to R
For each edge (u, v) incident to u
If v 1s not marked “Explored” then

DFS(v)

Jan 31, 2018

CSCI211 - Sprenkle

Implementing DFS

Keep nodes to be processed in a stack

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S !'= {}
Take a node u from S
1f Explored[u] = false
Explored[u] true
Add edge (u, Parent[u]) to T (if u = s)
for each edge (u, v) incident to u
Add v to the stack S
Parent[v] = u

What is the runtime!
How many times is a node added/removed from the stack?

Jan 31,2013 CSCIZI1-5prenkie

Analyzing DFS
O(n+m)

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = @, for all v :I"O(n)
DFS tree T = {}
while S = {}
Take a node u from S
1f Explored[u] = false
Explored[u] true
Add edge (u, Parent[u]) to T (if u = s)
deg(u) for each edge (u, v) incident to u
Add v to the stack S
Parent[v] = u

A node is added/removed from the stack 2* deg(u)
All nodes are added 2m = O(m) times

Jall JiL, £U1l0 CoLTvli4s 11 ™ OMIrcIinic

Analyzing
Finding All Connected Components

How can we find the set of all connected
components of the graph?

R*¥ = set of connected components (a set of sets)
while there is a node that does not belong to R*

select s not in R*

R = {s}
while there is an edge (u,v) where ueR and ve&R
add v to R
But the inner loop is O(m+n)!
How can this RT be possible!?
Add R to R* |

Claim: Running time is O(m+n)

Jan 31, 2018 CSCI211 - Sprenkle 10

Set of All Connected Components

How can we find the set of all connected
components of the graph?

R*¥ = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*
Imprecision in the running time

R = {s} of inner loop: O(m+n)

while there is an edge (u,v) where ueR and véR |

add v to R
But that’s m and n of the

connhected component,
Add R to R* let’s say m.and n. .

Where i is the subscript of the 2, O(m;+ n;) = O(m+n)

connected component
Jan 31, 2018 CSCI211 - Sprenkle 11

BIPARTITE GRAPHS

Jan 31, 2018 CSCI211 - Sprenkle

12

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if
the nodes can be colored red or blue such that
every edge has one red and one blue end

Generally: vertices divided into sets X and Y
Applications: a bipartite graph

Stable marriage:
men = red, women = blue

Scheduling:
machines = red, jobs = blue

Jan 31, 2018 CSCI211 - Sprenkle 13

Testing Bipartiteness

Given a graph G, is it bipartite?
Many graph problems become:
Easier if underlying graph is bipartite (e.g., matching)

Tractable if underlying graph is bipartite (e.g.,
independent set)

Before designing an algorithm, need to understand
structure of bipartite graphs

a bipartite V T V3
another
graph G: / \

drawing of G:
Ve < Vg / 7
vz T

Jan 31, 2018 CSCI211 - Sprenkle 14

How Can We Determine if a Graph is
Bipartite?

Given a connected graph Why connected?

Color one node red
Doesn’t matter which color (Why?)

What should we do next?

\J) V3

* How will we know when

/ \ we’re finished!?

Vg < Ve
V7

\'/
/ ! * What does this process
o sound like?

Jan 31, 2018 CSCI211 - Sprenkle 15

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot
contain an odd-length cycle.

bipartite not bipartite
(2-colorable) (not 2-colorable)

Jan 31, 2018 CSCI211 - Sprenkle

16

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot
contain an odd-length cycle.

Pf. Not possible to 2-color the odd cycle, let
alone G.

If find an odd cycle,
graph is NOT bipartite

bipartite not bipartite
(2-colorable) (not 2-colorable)

Jan 31, 2018 CSCI211 - Sprenkle 17

How Can We Determine if a Graph is
Bipartite?
Given a connected graph

Color one node red
Doesn’t matter which color (Why?)

What should we do next?
How will we know that we’re finished?
What does this process sound like?

BFS: alternating colors, layers <_i§
How can we implement the algorithm!?

Jan 31, 2018 CSCI211 - Sprenkle 18

Implementing Algorithm

Modify BFS to have a Color array

When add v to list L[i+1]
Color[v] =red if i+1 is even
Color[v] = blue if i+1 is odd

What is the running time of this algorithm? O(n+m)

Marks a change in how we think about algorithms
Starting to apply known algorithms to solve new problems

Jan 31, 2018 CSCI211 - Sprenkle 19

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L,, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:
(i) No edge of G joins two nodes of the same layer
m=) G is bipartite
(ii) An edge of G joins two nodes of the same layer
m=) G contains an odd-length cycle and hence is not bipartite

@ @
Case (i): @ Case (ii): '<:—'/-\:><I
L, L, L, L, L, L,

Jan 31, 2018 CSCI211 - Sprenkle 20

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

(i) No edge of G joins two nodes of the same layer
=) G is bipartite
Pf. (i)
Suppose no edge joins two nodes in the same layer
Implies all edges join nodes on adjacent level
Bipartition

®
red = nodes on odd levels
blue = nodes on even levels

Jan 31, 2018 CSCI211 - Sprenkle 21

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L,, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

(ii) An edge of G joins two nodes of the same layer 2

G contains an odd-length cycle and hence is not bipartite
Pf. (ii)

Suppose (x, y) is an edge with x, y in same

level L.

Let z = Ica(x, y) = lowest common ancestor

Let L, be level containing z

Consider cycle that takes edge from x to y,
then path y =2z, then path from z 2 x

Jan 31, 2018 CSCI211 - Sprenkle

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L,, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

(ii) An edge of G joins two nodes of the same layer 2

G contains an odd-length cycle and hence is not bipartite
Pf. (ii)
Suppose (x, y) is an edge with x, y in same level

L.

Let z = |ca(x, y)=lowest common ancestor
Let L, be level containing z

Consider cycle that takes edge from x to y,
then path y =2 z, then path z 2 x

Its length is ‘_’I'_,+ (j-) + (j-i), which is odd
(x,y) Path from path from
ytoz Z to X

Jan 31, 2018 CSCI211 - Sprenkle

An Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no
odd length cycle.

<4 5-cycle C
bipartite not bipartite
(2-colorable) (not 2-colorable)

Jan 31, 2018 CSCI211 - Sprenkle 24

Looking Ahead

Goal: Finish graphs before Exam 1
Wiki: 3.2-3.6
» Covered in class: 3.2-3.4
» Expected: 3.5-3.6 on Monday

» Willing to push wiki to Tuesday at 11:59 p.m.

PS 4 — due Friday

» First two problems — know how to do now

» Second two problems should wait until after
Monday’s class

Feb 2, 2018 CSCI211 - Sprenkle

25

