Objectives

- Directed Graphs
- Topological Orderings of DAGs

Feb 5, 2018

CSCI211 - Sprenkle

1

Graph Summary So Far

• What do we know about graphs?

Feb 5, 2018

CSCI211 - Sprenkle

Graph Summary So Far

- What do we know about graphs?
 - Representation: Adjacency List, Space O(n+m)
 - Connectivity
 - BFS, DFS O(n+m)
- Can apply BFS for Bipartite

Feb 5, 2018

CSCI211 - Sprenkle

3

Second verse, similar to the first. But directed!

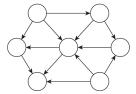
DIRECTED GRAPHS

Feb 5, 2018

CSCI211 - Sprenkle

Directed Graphs G = (V, E)

• Edge (u, v) goes from node u to node v



- Example: Web graph hyperlink points from one web page to another
 - > Directedness of graph is crucial
 - Modern web search engines exploit hyperlink structure to rank web pages by importance

Feb 5, 2018

CSCI211 - Sprenkle

5

Representing Directed Graphs

- For each node, keep track of
 - Out edges (where links go)
 - ➤ In edges (from where links come in)
 - ➤ Space required?
- Could only store out edges
 - Figure out *in* edges with increased computation/time
 - Useful to have both in and out edges

Feb 5, 2018

CSCI211 - Sprenkle

Rock Paper Scissors Lizard Spock

Feb 5, 2018

CSCI211 - Sprenkle

7

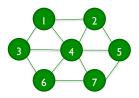
CONNECTIVITY IN DIRECTED GRAPHS

Feb 5, 2018

CSCI211 - Sprenkle

Graph Search

• How does *reachability* change with directed graphs?



- Example: Web crawler
 - 1. Start from web page s.
 - 2. Find all web pages linked from s, either directly or indirectly.

Feb 5, 2018 CSCI211 - Sprenkle

Graph Search

- Directed reachability. Given a node s, find all nodes reachable from s.
- Directed s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?
 - ➤ Not necessarily the same as t→s shortest path
- Graph search. BFS and DFS extend naturally to directed graphs
 - > Trace through *out* edges
 - ➤ Run in O(m+n) time

Feb 5, 2018

CSCI211 - Sprenkle

LO

Problem

- Find all nodes with paths to s
 - > Rather than paths from s to other nodes

Feb 5, 2018

CSCI211 - Sprenkle

11

Problem/Solution

- Problem. Find all nodes with paths to s
- Solution. Run BFS on in edges instead of out edges

Feb 5, 2018

CSCI211 - Sprenkle

DAGS AND TOPOLOGICAL ORDERING

Feb 5, 2018 CSCI211 - Sprenkle

Directed Acyclic Graphs

- Def. A DAG is a directed graph that contains no directed cycles.
- Example. Precedence constraints:
 edge (v_i, v_i) means v_i must precede v_i
 - Course prerequisite graph: course v_i must be taken before v_i
 - Compilation: module v_i must be compiled before v_i
 - Pipeline of computing jobs: output of job v_i needed to determine input of job v_j

13

Feb 5, 2018

CSCI211 - Sprenkle

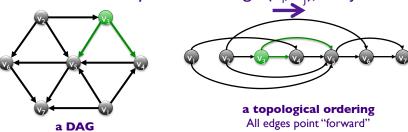
Problem: Valid Ordering

 Given a set of tasks with dependencies, what is a valid order in which the tasks could be performed?

Feb 5, 2018 CSCI211 - Sprenkle 15

Topological Ordering

- Problem: Given a set of tasks with dependencies, what is a valid order in which the tasks could be performed?
- Def. A topological order of a directed graph
 G = (V, E) is an ordering of its nodes as v₁, v₂, ..., v_n such that for every directed edge (v_i, v_i), i < j.



Coordinating labeling of nodes, but numbering is not known for just DAG

Topological Ordering Example

- Given a set of tasks with dependencies, what is a valid order in which the tasks could be performed?
 - > Example: Course prerequisites
 - Values of the nodes vs. their ids
- A topological order of a directed graph
 G = (V, E) is an ordering of its nodes as
 v₁, v₂, ..., v_n such that for every directed edge (v_i, v_j), i < j.

Feb 5, 2018

CSCI211 - Sprenkle

17

Towards a Solution

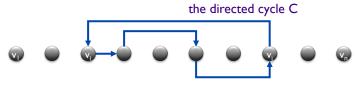
- Start by showing that if G has a topological order, then G is a DAG
- Eventually, we'll show the other direction:
 if G is a DAG, then G has a topological order

Feb 5, 2018

CSCI211 - Sprenkle

Directed Acyclic Graphs

- Lemma. If G has a topological order, then G is a DAG.
- Proof plan: Try to show that G has a topological order even though G has a cycle



the supposed topological order: $v_1, ..., v_n$

Why isn't this valid?

Feb 5, 2018

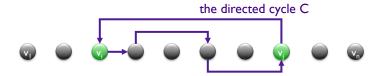
CSCI211 - Sprenkle

19

DAGs & Topological Orderings

- Lemma. If G has a topological order, then G is a DAG.
- Pf. (by contradiction)
 - Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C.

What can we say about that cycle and the nodes, edges in the cycle?



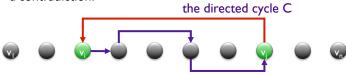
the supposed topological order: $v_1, ..., v_n$

Feb 5, 2018

CSCI211 - Sprenkle

DAGs & Topological Orderings

- Lemma. If G has a topological order, then G is a DAG.
- Pf. (by contradiction)
 - Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C.
 - Let v_i be the lowest-indexed node in C, and let v_j be the node on C just before v_i; thus (v_i, v_i) is an edge
 - By our choice of i (lowest-indexed node), i < j</p>
 - Since (v_j, v_i) is an edge and v₁, ..., v_n is a topological order, we must have j < i</p>
 - a contradiction. •



the supposed topological order: $v_1, ..., v_n$

Feb 5, 2018 CSCI211 - Sprenkle 21

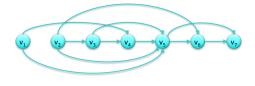
Directed Acyclic Graphs

- Does every DAG have a topological ordering?
 - > If so, how do we compute one?

Feb 5, 2018 CSCI211 - Sprenkle 22

Directed Acyclic Graphs

- Does every DAG have a topological ordering?
 - > If so, how do we compute one?
- What do we need to be able to create a topological ordering?
 - ➤ What are some characteristics of this graph?



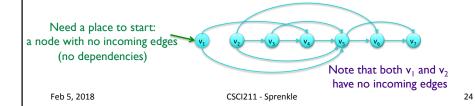
Feb 5, 2018

CSCI211 - Sprenkle

23

Directed Acyclic Graphs

- Does every DAG have a topological ordering?
 - > If so, how do we compute one?
- What do we need to be able to create a topological ordering?
 - ➤ What are some characteristics of this graph?



Towards a Topological Ordering

Goal: Find an algorithm for finding the TO Idea: 1st node is one with no incoming edges

Do we know there is always a node with no incoming edges?

Feb 5, 2018

CSCI211 - Sprenkle

25

Towards a Topological Ordering

- Lemma. If G is a DAG,
 then G has a node with no incoming edges
 - > This is our starting point of the topological ordering

How to prove?

Feb 5, 2018

CSCI211 - Sprenkle

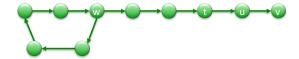
Towards a Topological Ordering

- Lemma. If G is a DAG,
 then G has a node with no incoming edges
- Proof idea: Consider if there is no node without incoming edges
 - > Restated: All nodes have incoming edges.
 - What contradiction are we looking for?

Feb 5, 2018 CSCI211 - Sprenkle 27

Towards a Topological Ordering

- Lemma. If G is a DAG, then G has a node with no incoming edges.
- Pf. (by contradiction)
 - Suppose that G is a DAG and every node has at least one incoming edge
 - Pick any node v, and follow edges backward from v.
 - Since v has at least one incoming edge (u, v), we can walk backward to u
 - > Since u has at least one incoming edge (t, u), we can walk backward to t
 - Repeat until we visit a node, say w, twice
 - Has to happen at least by step n+1 (Why?)
 - ➤ Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle, which is a contradiction to G is a DAG ■



Feb 5, 2018

CSCI211 - Sprenkle

Putting it all together: Creating a topological order

Ideas?

Feb 5, 2018

CSCI211 - Sprenkle

Topological Ordering Algorithm

Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}
and append this order after v

How do we know this works?

Feb 5, 2018

CSCI211 - Sprenkle

30 3

Directed Acyclic Graphs

- Lemma. If G is a DAG, then G has a topological ordering.
- Pf. (by induction on n)
 - Base case:

Feb 5, 2018

CSCI211 - Sprenkle

31

Directed Acyclic Graphs

- Lemma. If G is a DAG, then G has a topological ordering.
- Pf. (by induction on n)
 - ➤ Base case: true if n = 1
 - Given DAG on n > 1 nodes, find a node v with no incoming edges

CSCI211 - Sprenkle

32

DAG

DAG

Directed Acyclic Graphs

- Lemma. If G is a DAG, then G has a topological ordering.
- Pf. (by induction on n)
 - ➤ Base case: true if n = 1
 - Given DAG on n > 1 nodes, find a node v with no incoming edges

DAG

DAG

- G { v } is a DAG because deleting v cannot create cycles
- Also know, by inductive hypothesis,G { v } has a topological ordering
- Place v first in topological ordering
- Append nodes of G { v } in topological order.
 - valid since v has no incoming edges.

Feb 5, 2018 CSCI211 - Sprenkle 33

Topological Ordering Algorithm

- Lemma. If G is a DAG, then G has a topological ordering.
- Algorithm:

```
Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}
and append this order after v
```

Feb 5, 2018

CSCI211 - Sprenkle

Topological Ordering Algorithm: Example



Topological order:

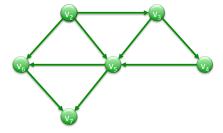
Feb 5, 2018

CSCI211 - Sprenkle

35

36

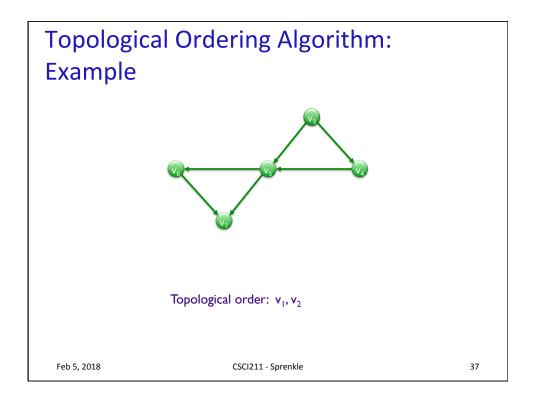
Topological Ordering Algorithm: Example

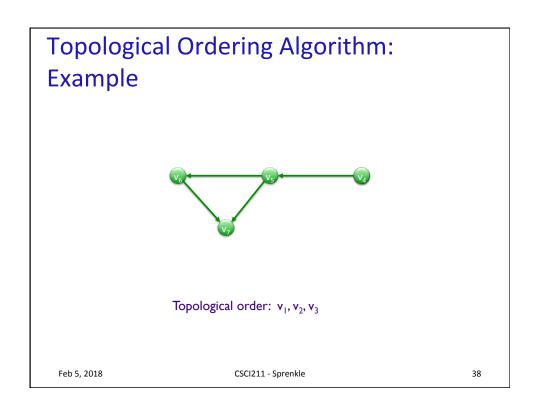


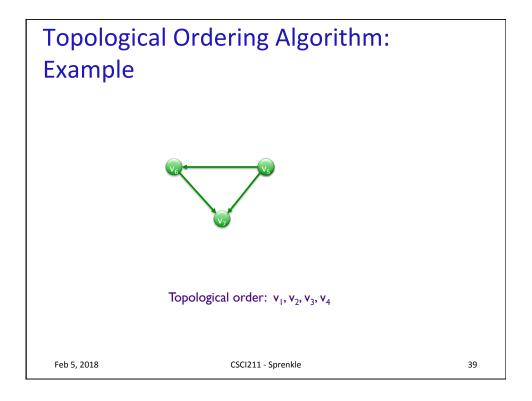
Topological order: v_1

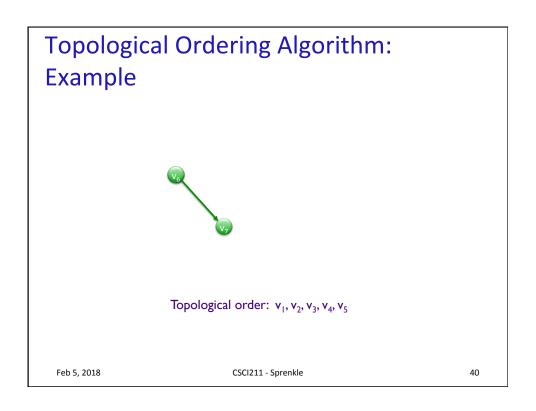
Feb 5, 2018

CSCI211 - Sprenkle









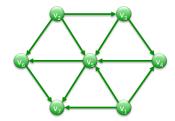
Topological Ordering Algorithm: Example

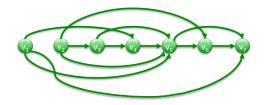
Topological order: $v_1, v_2, v_3, v_4, v_5, v_6$

Feb 5, 2018

CSCI211 - Sprenkle

Topological Ordering Algorithm: Example





41

42

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6, v_7$.

Feb 5, 2018

CSCI211 - Sprenkle

Topological Order Runtime

```
Find a node v with no incoming edges
Order v first
Delete v from G
Recursively compute a topological ordering of G-{v}
and append this order after v
```

- Where are the costs?
- How would we implement?

 Feb 5, 2018
 CSCI211 - Sprenkle
 43

Topological Order Runtime

```
Find a node v with no incoming edges O(n)
Order v first O(1)
Delete v from G O(n)
Recursively compute a topological ordering of G-\{v\}
and append this order after v O(1)
```

- Find a node without incoming edges and delete it: O(n)
- Repeat on all nodes

Can we do better?

 \rightarrow O(n²)

Feb 5, 2018

CSCI211 - Sprenkle

Topological Sorting Algorithm: Running Time

- Theorem. Find a topological order in O(m + n) time
- Pf.
 - Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
 - Initialization: O(m + n) via single scan through graph
 - > Algorithm:
 - Select a node v from S, remove v from S
 - Decrement count[w] for all edges from v to w
 - \triangleright Add ψ to S if count[ψ] = 0

Feb 5, 2018

CSCI211 - Sprenkle

45

Looking Ahead

- Wiki due Tuesday at 11:59 p.m.
 - ➤ Sections 3.2-3.6
- Problem Set 4 due Friday

Feb 5, 2018

CSCI211 - Sprenkle