Objectives

Wrap Up: Interval Partitioning

Minimizing Lateness
Greedy exchange

Feb 12,2018 CSCI211 - Sprenkle

Review

Problem: Interval Scheduling
Solution?
How proved algorithm optimal?

Problem: Interval Partitioning
Solution?

Feb 12,2018 CSCI211 - Sprenkle

2/12/18

Review: Greedy Stays Ahead Proofs

Define your solutions
Describe the form of your greedy solution (A) and of some other solution
(possibly the optimal solution, O)

Find a measure
Find a measure by which greedy stays ahead of the optimal solution

Ex: Letay, ..., a, be the first k measures of greedy algorithmando,, ..., o,
be the first m measures of other solution (sometimes m = k)

Prove greedy stays ahead
Show that greedy’s partial solutions constructed are always just as good
as the optimal solution’s initial segments based on the measure
Ex: for all indices r < min(k,m), prove by induction thata, 20, or a, < o,

Use the greedy algorithm to help you argue the inductive step
Prove optimality

Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal

Feb 12,2018 —> Make sure maps back to measure of optimality 3

Review: Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Ex: 10 lectures in 4 classrooms T ——

an we us
- € feWer r
— Ooms?

© i

9 9:30 10 1030 11 11:30 12 1230 | 1:30 2 2:30 3 3:30 4 4:30

Feb 12,2018 CSCI211 - Sprenkle 4

2/12/18

Review:
Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Sort intervals by starting time so that s; <5, < ... =< s,
d =0 <«—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+ 1
Implementation: O(n log n)
For each classroom k, maintain the finish time of the last job
added

Keep the classrooms in a priority queue by last job finish time

Feb 12,2018 CSCI211 - Sprenkle 5

Interval Partitioning: Greedy Analysis

Defn. The depth d of a set of open intervals
(lectures) is the maximum number that contain
any given time.

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal

Pf Intuition
When do we add more classrooms?
When would we add the d+1 classroom?

Feb 12,2018 CSCI211 - Sprenkle 6

2/12/18

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules
two incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal

Pf.

» Let d = number of classrooms that the greedy algorithm
allocates

» Classroom d is opened because we needed to schedule a
job, say j, that is incompatible with all d-1 other
classrooms

» Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than's,

» Thus, we have d lectures overlapping at time s; + ¢

» dis the depth of the set of lectures

Feb 12, 2018 CSC1211 - Sprenkle Structural argument,

Exchange argument

SCHEDULING TO
MINIMIZE MAX LATENESS

Feb 12,2018 CSCI211 - Sprenkle 8

2/12/18

Scheduling to Minimizing Max Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at time d,
(its deadline)

If j starts at time s,, it finishes at time f, =5, + t,
Lateness: ¢,=max{0, f-d;}
Goal: schedule all jobs to minimize maximum lateness

L =max /,
inpu: EENENENEEY
3 2 1 4 3 2
“ O | W]l lateness = 2 lateness = 0 lateness = 6
4=9 =8 dy=15 d =6 ds = 14 1 d,=9
0 | 2 3 4 5 6 7 8 9 10 1 2 13 14 15
One schedule
Feb 12,2018 csciz11-spre Note: not a sum total 9
Greedy Algorithms

Greedy template.
Consider jobs in some order

What do we want to optimize?
What order?

Intuition of order?
Counter examples for order being optimal?

Feb 12,2018 CSCI211 - Sprenkle 10

2/12/18

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

» Shortest processing time first. Consider jobs in
ascending order of processing time t,.

Counter example I 10

» Smallest slack. Consider jobs in ascending order of

slack dj-tj.
Counter example | 0
|
~

Feb 12,2018 CSCI211 - Sprenkle 11

Minimizing Lateness: Greedy Algorithm

Earliest deadline first.

Sort n jobs by deadline so that d, < d, < .. =< d,
t=0
for j=1ton

Assign job j to interval [t, t + tj]

Sj = t
f] = t + t]
t=t + tj
output intervals [s;, f;]
max lateness = |
d =6 d,=8 |dy3=9 d,=9 ds = 14 dg =15
0 | 2 3 4 5 6 7 8 9 10 I 12 13 14 15

What can we say about this algorithm/its results? ‘

Feb 12,2018 CSCI211 - Sprenkle 12

2/12/18

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule
with no idle time

d=4 d=6 d=12
|

0 2 3 4 5 6 7 8 9 10 I

Observation. The greedy schedule has no idle
time

Feb 12,2018 CSCI211 - Sprenkle 13

Proving Optimality

Goal: Prove greedy algorithm produces optimal
solution
Approach: Exchange argument

Start with an optimal schedule Opt

Gradually modify Opt, preserving its optimality

Transform into a schedule identical to greedy’s
schedule

Feb 12,2018 CSCI211 - Sprenkle 14

2/12/18

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i
and j such that:

d; < d, (s deadline is before j)

but j scheduled before i

inversion

N . —

Can Greedy'’s solution have any inversions!?

Feb 12,2018 CSCI211 - Sprenkle 15

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i
and j such that:

d; < d, ('s deadline is before j)

but j scheduled before i

inversion

peore v [T | |

Greedy’s schedule has no inversions!

Feb 12,2018 CSCI211 - Sprenkle 16

2/12/18

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness

‘ How do we know inversions are adjacent? ‘

Pf Setup. Let / be the lateness before the swap,
and let /' be it afterwards

What can we say about how
i’s, j’'s, and other jobs’ lateness changes?

inversion

;

before swap -h; [[]

derswap | [N [|
Fi

By defn of inversion, d. < dj
Feb 12,2018 CSCI211 - Sprenkle 17

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the same
deadline does not increase the max lateness

Pf. Let / be the lateness before the swap,
and let 7’ be it afterwards
» Lateness remains the same for all other jobs:
0=/ forallk=i,j
» I, < (, because d;< d;
» Lateness of i before is /=f,-d; =T + t;+ t;- d,
» Lateness of j afteris /',=f - d =T, +t;+ t;- d,
But d; < d| ; Put in terms of /;
veore sy [I | |
aerswap [[[N [[

f.

I
Feb 12,2018 CSCI211 - Sprenkle 18

2/12/18

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let / be the lateness before the swap, and let
!' be it afterwards

f
> (lk — gk for all k = |;J before[]:ﬂj

AT 24 f

i

J

»Ifjobjislate: o, = f-d, (definition) d <d
= fi-d,; (7 finishes at time f,)
= fi—d @i<J)
= [, (definition)

Shows that the maximum lateness of jobs does not increase after swap

Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.
» Example: let A={a,, a,, ..., a,} be the solution generated by your algorithm,
and let O ={o,, 0,, ..., 0,,} be an optimal feasible solution.
Compare greedy with other solution.
» Assume that the optimal solution is not the same as your greedy solution
(since otherwise, you are done).
> ically, can isolate a simple example of this difference, such as:
% There is an element e € O that € A and an element f € Athat¢ O
2 consecutive elements in O are in a different order than in A
» i.e., thereisan inversion
Exchange.
> Swap the elements in question in O (either (1) swap one element out and
another in or (2) swap the order of the elements) and argue that solution is no
worse than before.
» Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.
» Thus, the greedy solution produced is just as good as any optimal solution,
and hence is optimal itself.

Feb 12,2018 CSCI211 - Sprenkle 20

2/12/18

Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf idea. Convert Opt to Greedy

Does opt schedule have idle time?
What if opt schedule has no inversions?
What if opt schedule has inversions?

Feb 12,2018 CSCI211 - Sprenkle 21

Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that has
the fewest number of inversions, and let's see
what happens
Can assume S* has no idle time
If S* has no inversions, then S = S*
If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

This contradicts definition of S* =

Feb 12,2018 CSCI211 - Sprenkle 22

2/12/18

Analyzing Running Time

Earliest deadline first.

Sort n jobs by deadline so that d, < d, < .. =< d,
t=0
for j=1ton

Assign job j to interval [t, t + tj]

Sj=t
fi =t +t; O(n logn)
t=1t+t

output intervals [s;, f;]

max lateness = |

\

What is the runtime of this algorithm?

Feb 12,2018 CSCI211 - Sprenkle 23

Greedy Analysis Strategies

Greedy algorithm stays ahead.

Show that after each step of the greedy
algorithm, its solution is at least as good as any
other algorithm's.

Exchange argument. Gradually transform any
solution to the one found by the greedy
algorithm without hurting its quality.

Structural. Discover a simple "structural" bound
asserting that every possible solution must have
a certain value. Then show that your algorithm
always achieves this bound.

Feb 12,2018 CSCI211 - Sprenkle 24

2/12/18

