Objectives

• Weighted, directed graph shortest path

Feb 16, 2018

CSCI211 - Sprenkle

1

Review

- What are the three ways to prove the optimality of a greedy algorithm?
- Problem: minimizing maximum lateness
 - ➤ Approach
 - Proving optimality

Feb 16, 2018

CSCI211 - Sprenkle

Greedy Analysis Strategies

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Feb 16, 2018 CSCI211 - Sprenkle 3

Analyzing Running Time Earliest deadline first.

```
Sort n jobs by deadline so that d_1 \le d_2 \le ... \le d_n
   for j = 1 to n
       Assign job j to interval [t, t + t]
                                                          O(n logn)
  output intervals [s<sub>i</sub>, f<sub>i</sub>]
                                             max lateness = I
               What is the runtime of this algorithm?
Feb 16, 2018
                                CSCI211 - Sprenkle
                                                                             4
```

Greedy Exchange Proofs

- 1. Label your algorithm's solution and a general solution.
 - Example: let $A = \{a_1, a_2, ..., a_k\}$ be the solution generated by your algorithm, and let $O = \{o_1, o_2, ..., o_m\}$ be an optimal feasible solution.
- 2. Compare greedy with other solution.
 - Assume that the optimal solution is not the same as your greedy solution (since otherwise, you are done).
 - Typically, can isolate a simple example of this difference, such as:
 - There is an element $e \in O$ that A and an element $A \in O$
 - 2 consecutive elements in O are in a different order than in A \succ i.e., there is an inversion
- Exchange.
 - Swap the elements in question in O (either 1) swap one element out and another in or 2 swap the order of the elements) and argue that solution is no worse than before.
 - Argue that if you continue swapping, you eliminate all differences between O and A in a finite # of steps without worsening the solution's quality.
 - Thus, the greedy solution produced is just as good as any optimal solution, and hence is optimal itself.

Feb 16, 2018 CSCI211 - Sprenkle 5

SHORTEST PATH

Feb 16, 2018

CSCI211 - Sprenkle

Shortest Path Problem

- Given
 - Directed graph G = (V, E)
 - > Source s, destination t
 - \triangleright Length ℓ_e = length of edge e (non-negative)
- Shortest path problem: find shortest directed path from s to t

Shortest Path Problem

- Shortest path problem: find shortest directed path from s to t
- Brainstorming on solution ...

Dijkstra's Algorithm

- 1. Maintain a set of explored nodes S
 - > Keep the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)= ∞
- 3. Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$
 - \triangleright Add v to S and set d(v) = π (v)

shortest path to some u in explored part followed by a single edge (u, v)

Dijkstra's Algorithm

- 1. Maintain a set of explored nodes S
 - Keep the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)= ∞
- 3. Repeatedly choose unexplored node v which $\min_{e = (u,v): u \in S} d(u) + \ell_e,$ minimizes $\pi(v) =$

 \triangleright Add v to S and set d(v) = π (v)

shortest path to some u in explored part followed by a single edge (u, v)

How is algorithm Greedy? Feb 16, 2018 CSCI211 - Sprenkle

How is Algorithm Greedy?

- We always form shortest new s->v path from a path in S followed by a single edge
- Proof of optimality: Stays ahead of all other solutions
 - Each time selects a path to a node v, that path is shorter than every other possible path to v

More on this later...

Feb 16, 2018

CSCI211 - Sprenkle

Dijkstra's Algorithm

- 1. Maintain a set of explored nodes S
 - > Keep the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)= ∞
- 3. Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$

CSCI211 - Sprenkle

 \triangleright Add v to S and set d(v) = π (v)

shortest path to (some u in explored part followed by a single edge (u, v))

- What to represent?
- How to represent?

13

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t

Feb 16, 2018

Looking Ahead

- Wiki due Monday, after break
 - "Front matter" of Chapter 4
- Problem Set 5 due Friday, after break

Feb 16, 2018

CSCI211 - Sprenkle