Objectives

- Wrap up: Weighted, directed graph shortest path
- Minimum Spanning Tree

Feb 26, 2018

CSCI211 - Sprenkle

1

Review

• What are greedy algorithms?

Feb 26, 2018

CSCI211 - Sprenkle

Review: Shortest Path Problem

Given

What was our strategy?

- ➤ Directed graph G = (V, E)
- ➤ Source s, destination t
- \triangleright Length ℓ_e = length of edge e (non-negative)
- Shortest path problem: find shortest directed path from s to t

Review: Dijkstra's Algorithm

- 1. Maintain a set of explored nodes S
 - Keep the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)=\infty
- 3. Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e = (u,v) \cdot u \in S} d(u) + \ell_e,$

shortest path to (some u in explored part followed by a single edge (u, v))

Implementation Ideas

• What to represent?

• How to represent?

Dijkstra's Shortest Path Algorithm

• Find shortest path from s to t

Dijkstra's Algorithm: Proof of Correctness

- Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Base case: |S|=1 ...
- Inductive hypothesis?
- Next step?

Feb 26, 2018

CSCI211 - Sprenkle

27

Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Base case: For |S| = 1, S={s}; d(s) = 0 ✓
- Inductive hypothesis:
 Assume true for |S| = k, k ≥ 1
- Proof:
 - ➤ Grow |S| to k+1
 - \triangleright Greedy: Add node v by $u \rightarrow v$
 - \triangleright What do we know about $s \rightarrow u$?
 - Why didn't we pick y as the next node?
 - \triangleright What can we say about other $s \rightarrow v$ paths?

Feb 26, 2018

CSCI211 - Sprenkle

Dijkstra's Algorithm: Proof of Correctness

- Prove: For each node $u \in S$, d(u) is the length of the shortest s-u path
- Pf. (by induction on |S|)
- Inductive hypothesis: Assume true for $|S| = k, k \ge 1$
- Proof

Feb 26, 2018

- ➤ Let v be the next node added to S by Greedy, and let $u \rightarrow v$ be the chosen edge
- \triangleright The shortest $s \rightarrow u$ path plus $u \rightarrow v$ is an $s \rightarrow v$ path of length $\pi(v)$
- \triangleright Consider any $s \rightarrow v$ path P. It's no shorter than $\pi(v)$.
- Let $x \rightarrow y$ be the first edge in P that leaves S, and let P' be the subpath to x.

CSCI211 - Sprenkle

Discussion: Dijstra's Algorithm

 Why does the algorithm break down if we allow negative weights/costs on edges?

Feb 26, 2018

CSCI211 - Sprenkle

Dijkstra's Algorithm: Analysis

- 1. Maintain a set of explored nodes S Know the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)= ∞
- 3. Repeatedly choose unexplored node ν which $\min_{e = (u,v): u \in S} d(u) + \ell_e,$ minimizes $\pi(v) =$
 - \triangleright Add v to S and set d(v) = π (v)

shortest path to some u in explored part, followed by a single edge (u, v) d(u) Running time?

31

Dijkstra's Algorithm: Analysis

- 1. Maintain a set of explored nodes S Keep the shortest path distance d(u) from s to u
- 2. Initialize S={s}, d(s)=0, \forall u \neq s, d(u)= ∞
- 3. Repeatedly choose unexplored node ν which $\min_{e = (u,v): u \in S} d(u) + \ell_e, \blacktriangleleft$ $\pi(v) =$ minimizes
 - \triangleright Add v to S and set d(v) = π (v)

Insert ExtractMin ChangeKey IsEmpty Total

shortest path to some u in explored part, followed by a single edge (u, v)

- How long does each operation take?
- · How many of each operation?

Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v) \colon u \in S} d(u) + \ell_e.$
 - \triangleright Next node to explore = node with minimum $\pi(v)$.
 - When exploring v, for each incident edge e = (v, w), update $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$
- Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

PQ Operation	RT of Op	# in Dijkstra
Insert	log n	n
ExtractMin	log n	n
ChangeKey	log n	m
IsEmpty	1	n
Total		
	CSCI211 - Spre	nkle

Feb 26, 2018

Feb 26, 2018

33

Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e$.
 - \triangleright Next node to explore = node with minimum $\pi(v)$.
 - When exploring v, for each incident edge e = (v, w), update $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$
- Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$

PQ Operation	RT of Op	# in Dijkstra
Insert	log n	n
ExtractMin	log n	n
ChangeKey	log n	m
IsEmpty	1	n
Total		m log n
	CSCI211 - Spre	nkle

Laying Cable

- Comcast wants to lay cable in a neighborhood
 - > Reach all houses
 - ➤ Least cost

Looking ahead

- Wiki today: Chapter 4 (front matter), 4.1, 4.2, 4.4
- PS5 due Friday

 Feb 26, 2018
 CSCI211 - Sprenkle
 36