Objectives

- Minimum Spanning Tree
- Union-Find Data Structure
- Clustering

Mar 2, 2018

CSCI211 - Sprenkle

1

Review

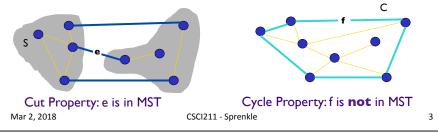
- What does the acronym MST stand for?
 - ➤ What is an MST?
- What are some algorithms to find the MST?

Mar 2, 2018

CSCI211 - Sprenkle

Summary of What We Proved

- Simplifying assumption: All edge costs c_e are distinct
 → MST is unique
- Cut property. Let S be any subset of nodes, and let e
 be the min cost edge with exactly one endpoint in S.
 Then MST contains e.
- Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C.
 Then MST does not contain f.



Prim's Algorithm

[Jarník 1930, Dijkstra 1957, Prim 1959]

- Start with some root node s and greedily grow a tree T from s outward.
- At each step, add the cheapest edge e to T that has exactly one endpoint in T.

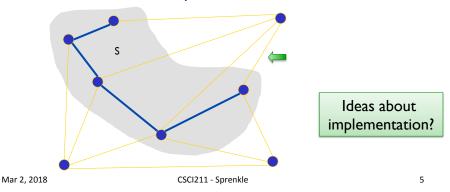
How can we prove its correctness?

Mar 2, 2018

CSCI211 - Sprenkle

Prim's Algorithm: Proof of Correctness

- Initialize S to be any node
- Apply cut property to S
 - Add min cost edge (v, u) in *cutset* corresponding to S, and add one new explored node u to S



Implementation: Prim's Algorithm

Similar to Dijkstra's algorithm

- Maintain set of explored nodes S
- For each unexplored node v, maintain attachment cost a[v] → cost of cheapest edge v to a node in S

```
foreach (v \in V) a[v] = \infty
Initialize an empty priority queue Q
foreach (v \in V) insert v onto Q
Initialize set of explored nodes S = \phi
while (Q is not empty)
u = \text{delete min element from Q}
S = S \cup \{u\}
foreach (edge e = (u, v) incident to u)
if ((v \notin S) \text{ and } (c_e < a[v]))
decrease priority <math>a[v] to c_e
```

Mar 2, 2018

Implementation: Prim's Algorithm

Similar to Dijkstra's algorithm

- Maintain set of explored nodes S
- For each unexplored node v, maintain attachment cost a[v] → cost of cheapest edge v to a node in S
 O(m log n) with a heap

```
foreach (v \in V) a[v] = \infty O(n)
Initialize an empty priority queue Q
foreach (v \in V) insert v onto Q O(n logn)
Initialize set of explored nodes S = \phi
while (Q is not empty) O(n)
u = \text{delete min element from Q O(log n)}
S = S \cup \{u\}
foreach (edge e = (u, v) incident to u)
if ((v \notin S) \text{ and } (c_e < a[v]))
decrease priority <math>a[v] to c_e O(log n) o
```

Kruskal's Algorithm [1956]

- Start with $T = \phi$
- Consider edges in ascending order of cost
- Insert edge e in T unless doing so would create a cycle
 - > Add edge as long as "compatible"

How can we prove algorithm's correctness?

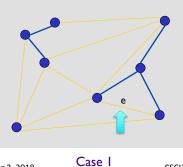
Mar 2, 2018

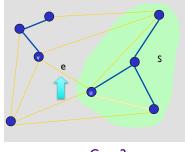
CSCI211 - Sprenkle

Kruskal's Algorithm: **Proof of Correctness**

What is tricky about implementing Kruskal's algorithm?

- Consider edges in ascending order of weight
- Case 1: If adding e to T creates a cycle, discard e according to cycle property (e must be max weight)
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component





Mar 2, 2018

CSCI211 - Sprenkle

Case 2

9

Implementing Kruskal's Algorithm

What is tricky about implementing Kruskal's algorithm?

How do we know when adding an edge will create a cycle?

• What are the properties of a graph/its nodes when adding an edge will create a cycle?

Mar 2, 2018

CSCI211 - Sprenkle

UNION-FIND DATA STRUCTURE

Mar 2, 2018

CSCI211 - Sprenkle

11

Union-Find Data Structure

- Keeps track of a graph as edges are added
 - Cannot handle when edges are deleted
- Maintains disjoint sets
 - ➤ E.g., graph's connected components
- Operations/API:
 - > Find(u): returns name of set containing u
 - How utilized to see if two nodes are in the same set?
 - Goal implementation: O(log n)
 - ➤ Union(A, B): merge sets A and B into one set
 - Goal implementation: O(log n)

Mar 2, 2018

Best darn Union-Find Data Structure

Implementing Kruskal's Algorithm

- Using the union-find data structure
 - Build set T of edges in the MST
 - Maintain set for each connected component

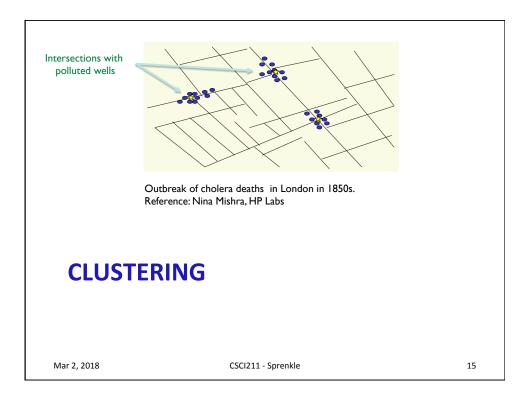
Costs?

```
Sort edge weights so that c_1 \le c_2 \le \ldots \le c_m T = \{\} foreach (u \in V) make a set containing singleton u for i = 1 to m are u and v in different connected components? (u,v) = e_i if (u and v are in different sets) T = T \cup \{e_i\} merge the sets containing u and v return v merge two components
```

Implementing Kruskal's Algorithm

- Using best implementation of union-find
 - > Sorting: $O(m \log n)$ $\longleftarrow m \le n^2 \Rightarrow \log m \text{ is } O(\log n)$
 - \triangleright Union-find: O(m α (m, n))
 - > O(m log n) essentially a constant

```
Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m T = \{\} foreach (u \in V) make a set containing singleton u for i = 1 to m are u and v in different connected components? (u,v) = e_i if (u and v are in different sets) T = T \cup \{e_i\} merge the sets containing u and v return v merge two components
```



Clustering

- Given a set *U* of *n* objects (or points) labeled
 p₁, ..., p_n, classify into coherent groups
 - Problem: Divide objects into clusters so that points in different clusters are far apart
 - Requires quantification of distance
- Applications
 - Routing in mobile ad hoc networks
 - ➤ Identify patterns in gene expression
 - Identifying patterns in web application use cases
 - Sets of URLs
 - > Similarity searching in medical image databases

Mar 2, 2018

CSCI211 - Sprenkle

Clustering: Distance Function

- Numeric value specifying "closeness" of two objects
- Assume distance function satisfies several natural properties

```
 > d(p_i, p_i) = 0 \text{ iff } p_i = p_i  (identity of indiscernibles)
```

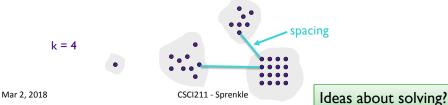
- $\geq d(p_i, p_i) \geq 0$ (nonnegativity)
- $> d(p_i, p_i) = d(p_i, p_i)$ (symmetry)

Mar 2, 2018 CSCI211 - Sprenkle 17

Our Problem:

k-Clustering of Maximum Spacing

- k-clustering. Divide objects into k non-empty groups
- Spacing. Min distance between any pair of points in different clusters
- k-clustering of maximum spacing.
 Given an integer k,
 find a k-clustering of maximum spacing



19

Greedy Clustering Algorithm

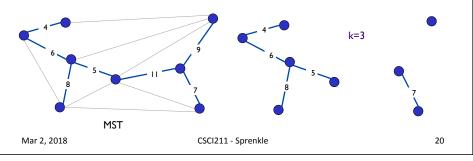
- Single-link *k*-clustering algorithm
 - Form a graph on the vertex set *U*, corresponding to *n* clusters
 - Find the closest pair of objects such that each object is in a different cluster and add an edge between them
 - Repeat n-k times until there are exactly k clusters

How is this related to the MST?

Mar 2, 2018 CSCI211 - Sprenkle

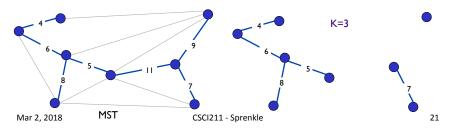
Greedy Clustering Algorithm

- Key observation: Same as Kruskal's algorithm
 - Except we stop when there are *k* connected components
- Remark. Equivalent to finding MST and deleting the k-1 most expensive edges



Greedy Clustering Algorithm: Analysis

- Theorem. Let C denote the clustering C₁, ..., C_k formed by deleting the k-1 most expensive edges of a MST.
 C is a k-clustering of max spacing.
- Pf Intuition:
 - What can we say about C's spacing?
 - Within clusters and between clusters
 - What if C isn't optimal?
 - What does that mean about C's clusters vs (optimal) C*'s clusters?



Greedy Clustering Algorithm: Analysis

- Theorem. Let C denote the clustering C₁, ..., C_k formed by deleting the k-1 most expensive edges of a MST.
 C is a k-clustering of maximum spacing.
- Pf Sketch. Let C* denote some other clustering C*₁, ..., C*_k.
 C* and C must be different; otherwise we're done.
 - The spacing of C is length d of (k-1)st most expensive edge
 - Let p_i , p_j be in the same cluster in Greedy solution C (say C_r) but different clusters in other solution C^* , say C^*_s and C^*_t
 - Some edge (p, q) on $p_i p_j$ path in C_r spans two different clusters in C^*

What do we know about (p, q)?

C*s / C*t Other solution

Cr

Pi P P P 22

Mar 2, 2018

CSCI211 - Sprenkle

Greedy Clustering Algorithm: Analysis

- Theorem. Let C denote the clustering C₁, ..., C_k formed by deleting the k-1 most expensive edges of a MST.
 C is a k-clustering of maximum spacing.
- Pf. Let C* denote some other clustering C*₁, ..., C*_k.
 C* and C must be different; otherwise we're done.
 - The spacing of C is length d of (k-1)st most expensive edge
 - Let p_i , p_j be in the same cluster in C (say C_r) but different clusters in C^* , say C^*_s and C^*_t
 - Some edge (p, q) on p_i-p_j path in C_r spans two different clusters in C*
 - All edges on p_i - p_j path have length $\leq d$ since Kruskal chose them
 - Spacing of C* is at most ≤ d since p and q are in different clusters

C*s\/C*rsolution
Cr/q pj

Mar 2, 2018

CSCI211 - Sprenkle

Looking Ahead

• Wiki: 4.5-4.7

Mar 2, 2018

CSCI211 - Sprenkle