
3/16/18

1

Objec&ves	
•  Introduc&on	to	Dynamic	Programming	

Ø Fibonacci	
Ø Weighted	interval	scheduling	

Mar	16,	2018	 1	CSCI211	-	Sprenkle	

Review	
• What	was	the	key	to	improving	the	run&me	of	
integer	and	matrix	mul&plica&on	opera&ons?	

Mar	16,	2018	 CSCI211	-	Sprenkle	 2	

3/16/18

2

Algorithmic	Paradigms	
• Greedy.		Build	up	a	solu&on	incrementally,	
myopically	op&mizing	some	local	criterion	

• Divide-and-conquer.		Break	up	a	problem	into	sub-
problems,	solve	each	sub-problem	independently,	
and	combine	solu&on	to	sub-problems	to	form	
solu&on	to	original	problem	

• Dynamic	programming.		Break	up	a	problem	into	a	
series	of	overlapping	sub-problems,	and	build	up	
solu&ons	to	larger	and	larger	sub-problems	

Mar	16,	2018	 CSCI211	-	Sprenkle	 3	

Dynamic	Programming	History	
• Richard	Bellman	pioneered	systema&c	study	of	
dynamic	programming	in	1950s	

• Etymology	
Ø Dynamic	programming	=	planning	over	&me	

• Not	our	typical	use	of	“programming”	
Ø Then-Secretary	of	Defense	was	hos&le	to	
mathema&cal	research	

Ø Bellman	sought	an	impressive	name	to	avoid	
confronta&on	
• "it's	impossible	to	use	dynamic	in	a	pejora&ve	sense"	
• "something	not	even	a	Congressman	could	object	to"	

Mar	16,	2018	 CSCI211	-	Sprenkle	 4	Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

3/16/18

3

WARMUP:		
FIBONACCI	SEQUENCE	

Mar	16,	2018	 CSCI211	-	Sprenkle	 5	

How	Would	You	Solve	the		
Fibonacci	Sequence?	
•  Input:	the	number	of	Fibonacci	numbers,	x	
• Output:	display	the	list	of	the	first	x	Fibonacci	
numbers	

Sequence:	
Ø F0=F1=1	
Ø Fn=Fn-1+	Fn-2	

Mar	16,	2018	 CSCI211	-	Sprenkle	 6	

3/16/18

4

Soln	1:	Using	a	List	
• Typical	Solu&on:	

Mar	16,	2018	 CSCI211	-	Sprenkle	 7	

fibs = [] # create an empty list
fibs.append(1) # append the first two Fib numbers
fibs.append(1)

for x in xrange(2, N):
 newfib = fibs[x-1]+fibs[x-2]

 fibs.append(newfib)

print(fibs) # print out the list

Do we need a whole list?

Building up solution

Running time? Space cost?

Soln	2:	Using	Three	Variables	
• Only	need	the	solu&ons	to	the	last	two	problems	
(F[k-1],	F[k-2])	

Mar	16,	2018	 CSCI211	-	Sprenkle	 8	

lastNum = 1
twoAgo = 1
print(twoAgo, lastNum, end=" ")

for n in xrange(2, N):

 nthNum = twoAgo + lastNum
 print(nthNum, end=" ")

 twoAgo = lastNum
 lastNum = nthNum

3/16/18

5

Soln	3:	Recursion	

• What	is	the	running	&me	of	this	algorithm?	

Mar	16,	2018	 CSCI211	-	Sprenkle	 9	

def fibonacci(n):
return fibonacci(n-1) + fibonacci(n-2)

Dynamic	Programming		
Memoiza@on	Process	

• Create	a	table	with	the	possible	inputs	
•  If	the	value	is	in	the	table,	return	it,	without	
recompu&ng	it	

• Otherwise,	call	func&on	recursively	
Ø Add	value	to	table	for	future	reference	

Mar	16,	2018	 CSCI211	-	Sprenkle	 10	

How can we apply this template to our Fibonnaci problem?

3/16/18

6

Memoiza&on	Example:	Fibonacci	

Mar	16,	2018	 CSCI211	-	Sprenkle	 11	

memoized_fibonacci(n):
for i = 1 to n:

results[i] = -1 # -1 means undefined

return memoized_fib_recurs(results, n)

memoized_fib_recurs(results, n):
if results[n] != -1: # value is defined

return results[n]
if n == 0:

val = 1
elif n == 1:

val = 1
else:

val = memoized_fib_recurs(results, n-2)
val = val + memoized_fib_recurs(results, n-1)

results[n] = val
return val

Runtime?

O(n)

Memoiza&on	Example:	Fibonacci	

Mar	16,	2018	 CSCI211	-	Sprenkle	 12	

memoized_fibonacci(n):
for i = 1 to n:

results[i] = -1 # -1 means undefined
results[1] = 1
results[2] = 1

return memoized_fib_recurs(results, n)

memoized_fib_recurs(results, n):
if results[n] != -1: # value is defined

return results[n]

val = memoized_fib_recurs(results, n-2)
val = val + memoized_fib_recurs(results, n-1)
results[n] = val
return val

Alternative version…

3/16/18

7

WEIGHTED		
INTERVAL	SCHEDULING	

Mar	16,	2018	 13	CSCI211	-	Sprenkle	

Weighted	Interval	Scheduling	
•  Job	j	starts	at	sj,	finishes	at	fj,	and	has	weight	or	value	vj			
•  Two	jobs	are	compa&ble	if	they	don't	overlap	
•  Goal:	find	maximum	weight	subset	of	mutually	compa&ble	

jobs	

Mar	16,	2018	 CSCI211	-	Sprenkle	 14	

Time
0 1 2 3 4 5 6 7 8 9 10 11

f	

g	

h	

e	

a	

b	

c	

d	

3/16/18

8

Unweighted	Interval	Scheduling	Review	
• Recall.	Greedy	algorithm	works	if	all	weights	are	
1	(or	equivalent).	
Ø Consider	jobs	in	ascending	order	of	finish	&me	
Ø Add	job	to	subset	if	it	is	compa&ble	with	previously	
chosen	jobs	

Mar	16,	2018	 CSCI211	-	Sprenkle	 15	

What happens to Greedy algorithm
if we add weights to the problem?

Limita&on	of	Greedy	Algorithm	
• Recall.	Greedy	algorithm	works	if	all	weights	are	
1	(or	equivalent).	
Ø Consider	jobs	in	ascending	order	of	finish	&me	
Ø Add	job	to	subset	if	it	is	compa&ble	with	previously	
chosen	jobs	

• Observa&on.		Greedy	algorithm	can	fail	
spectacularly	if	arbitrary	weights	are	allowed	

Mar	16,	2018	 CSCI211	-	Sprenkle	 16	

Time
0 1 2 3 4 5 6 7 8 9 10 11

a	

weight = 999

weight = 1

b	

Any other greedy approaches?

3/16/18

9

Limita&ons	of	Greedy	Algorithms	
• Need	to	consider	weight	

Ø No	greedy	algorithm	works	

• Need	a	more	complex	algorithm	to	solve	
problem	

Mar	16,	2018	 CSCI211	-	Sprenkle	 17	

Weighted	Interval	Scheduling	
Nota&on.	Label	jobs	by	finishing	&me:	f1		≤		f2		≤	.	.	.	≤	fn		
Def.		p(j)	=	largest	index	i	<	j	such	that	job	i	is	compa&ble	with	j	
Ex:		p(8)	=	5,	p(7)	=	3,	p(2)	=	0	

Mar	16,	2018	 CSCI211	-	Sprenkle	 18	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6	

7	

8	

4	

3	

1	

2	

5	

Why is ordering by
finish time useful in

this problem?

3/16/18

10

Dynamic	Programming	
• Assume	we	have	an	op&mal	solu&on	
• OPT(j)	=	value	of	op&mal	solu&on	to	the	problem	
consis&ng	of	job	requests	1,	2,	...,	j	

Mar	16,	2018	 CSCI211	-	Sprenkle	 19	

What is something obvious/trivial we can we say
about the optimal solution with respect to job j?

Dynamic	Programming:	Binary	Choice	
• OPT(j)	=	value	of	op&mal	solu&on	to	the	problem	
consis&ng	of	job	requests	1,	2,	...,	j	
Ø Case	1:		OPT	selects	job	j	

Ø Case	2:		OPT	does	not	select	job	j	

Mar	16,	2018	 CSCI211	-	Sprenkle	 20	

Explore both of these cases…
• What jobs are in OPT? Which are not?

Keep in mind our definition of p

3/16/18

11

Weighted	Interval	Scheduling	
Nota&on.	Label	jobs	by	finishing	&me:	f1		≤		f2		≤	.	.	.	≤	fn		
Def.		p(j)	=	largest	index	i	<	j	such	that	job	i	is	compa&ble	with	j	
Ex:		p(8)	=	5,	p(7)	=	3,	p(2)	=	0	

Mar	16,	2018	 CSCI211	-	Sprenkle	 21	

Time
0 1 2 3 4 5 6 7 8 9 10 11

6	

7	

8	

4	

3	

1	

2	

5	

Dynamic	Programming:	Binary	Choice	
• OPT(j)	=	value	of	op&mal	solu&on	to	the	problem	
consis&ng	of	job	requests	1,	2,	...,	j	
Ø Case	1:		OPT	selects	job	j	

• can't	use	incompa&ble	jobs	{	p(j)	+	1,	p(j)	+	2,	...,	j	-	1	}	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		p(j)	

Ø Case	2:		OPT	does	not	select	job	j	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		j-1	

Mar	16,	2018	 CSCI211	-	Sprenkle	 22	

optimal substructure

Formulate OPT(j) as a recurrence relation

3/16/18

12

Dynamic	Programming:	Binary	Choice	
• OPT(j)	=	value	of	op&mal	solu&on	to	the	problem	
consis&ng	of	job	requests	1,	2,	...,	j	
Ø Case	1:		OPT	selects	job	j	

• can't	use	incompa&ble	jobs	{	p(j)	+	1,	p(j)	+	2,	...,	j	-	1	}	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		p(j)	

Ø Case	2:		OPT	does	not	select	job	j	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		j-1	

Mar	16,	2018	 CSCI211	-	Sprenkle	 23	

Formulate OPT(j) in terms
of smaller subproblems

Which should we choose?

Two options: Opt(j) = vj + Opt(p(j))
 Opt(j) = Opt(j-1)

Dynamic	Programming:	Binary	Choice	
• OPT(j)	=	value	of	op&mal	solu&on	to	the	problem	
consis&ng	of	job	requests	1,	2,	...,	j	
Ø Case	1:		OPT	selects	job	j	

• can't	use	incompa&ble	jobs	{	p(j)	+	1,	p(j)	+	2,	...,	j	-	1	}	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		p(j)	

Ø Case	2:		OPT	does	not	select	job	j	
• must	include	op&mal	solu&on	to	problem	consis&ng	
of	remaining	compa&ble	jobs	1,	2,	...,		j-1	

Mar	16,	2018	 CSCI211	-	Sprenkle	 24	

Choose the “better” �
of the two solutions

BasecaseOpt(j) = 0 j=0

 max{ vj + Opt(p(j)), Opt(j-1) } Otherwise

3/16/18

13

Weighted	Interval	Scheduling:	
Recursive	Algorithm	

Mar	16,	2018	 CSCI211	-	Sprenkle	 25	

Input: n jobs (associated start time sj, finish time fj, and value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn

Compute p(1), p(2), …, p(n)

Compute-Opt(j):
 if j = 0
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

What is the runtime?
(Trace for n = 5) 5	

1	

2	
3	

4	

Picks j Doesn’t pick j

Closest compatible job

Weighted	Interval	Scheduling:	
Brute	Force	
• Observa&on.		Redundant	sub-problems		⇒		
exponen&al	algorithms	

• Ex.		Number	of	recursive	calls	for	family	of	
"layered"	instances	grows	like	Fibonacci	
sequence.	

Mar	16,	2018	 CSCI211	-	Sprenkle	 26	

5	

1	

2	

p(1) = 0, p(j) = j-2

5	

4	 3	

3	 2	 2	 1	

2	 1	

1	 0	

1	 0	 1	 0	
3	

4	

3/16/18

14

Weighted	Interval	Scheduling:	
	Memoiza&on	

• Store	results	of	each	sub-problem	in	a	cache;	
lookup	as	needed.	

Mar	16,	2018	 CSCI211	-	Sprenkle	 27	

Input: n jobs (associated start time sj, finish time fj, and value vj)

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j):
 if M[j] is empty:
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]

M-Compute-Opt(n)

global array

Call function with initial input

Example	
• Jobs	labeled	as	name	–	weight	

Mar	16,	2018	 CSCI211	-	Sprenkle	 28	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

0 A B C D E F G H
0

M

3/16/18

15

Example	
• Jobs	labeled	as	name	–	weight	

Mar	16,	2018	 CSCI211	-	Sprenkle	 29	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

0 A B C D E F G H
0

M

What is the value of p for each job?

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 30	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

3/16/18

16

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 31	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

CO(H)

1 + CO(E) CO(G)

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 32	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

CO(H)

1 + CO(E) CO(G)

5 + CO(0) CO(D)

3/16/18

17

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 33	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0

CO(H)

1 + CO(E) CO(G)

5 + CO(0) CO(D)

0 4+CO(A) CO(C)

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 34	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+CO(A) CO(C)

1 + CO(0) CO(0)

L

3/16/18

18

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 35	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+1 CO(C)

3+C(0) CO(B)

L

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 36	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+1 CO(C)

3 CO(B)

2+ CO(0) CO(A)

L

3/16/18

19

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 37	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+1 CO(C)

3 CO(B)

2 1

L

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 38	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+1 CO(C)

3 CO(B)

2 1

LL

3/16/18

20

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 39	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3

CO(H)

1 + CO(E) CO(G)

5 CO(D)

4+1 CO(C)

3 2

LL L

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 40	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5

CO(H)

1 + CO(E) CO(G)

5 CO(D)

5 3

LL L L

3/16/18

21

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 41	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5

CO(H)

1 + CO(E) CO(G)

5 5

LL L L L/R

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 42	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5

CO(H)

1 + 5 CO(G)

LL L L L/R

3/16/18

22

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 43	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5

CO(H)

1 + 5 CO(G)

2+CO(C) CO(F)

LL L L L/R

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 44	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5

CO(H)

6 CO(G)

2+3 CO(F)

3+CO(B) CO(E)

LL L L L/R

3/16/18

23

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 45	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5

CO(H)

6 CO(G)

LL L L L/R

2+3 CO(F)

3+2 5

L/R

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 46	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5 5

CO(H)

6 CO(G)

LL L L L/R

2+3 5

L/R L/R

3/16/18

24

Example	

Mar	16,	2018	 CSCI211	-	Sprenkle	 47	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	2	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H
0 1 2 3 5 5 5 5 6

CO(H)

6 5

LL L L L/R L/R L/R L

Exam	
•  Focused	on	greedy	and	dynamic	programming	
•  Rules	

Ø Open	brain	notes,	textbook,	wiki,	my	lecture	notes	
Ø  Limited	me	
Ø  Closed	everything	else	

•  Adjustments	
Ø No	class	on	Monday	–	addi&onal	office	hours	during	that	&me	
Ø No	wiki	for	next	week	

•  May	want	to	review	D&C	chapters	not	in	the	wiki	
Ø Office	hours:	

•  Monday:	9:45	–	10:45	(class),	2:35	–	4	p.m.	
• Wednesday:	10:45-noon,	2:35-4	p.m.,	5-6	p.m.	
•  Thursday:	1	p.m.	–	5	p.m.	

Mar	16,	2018	 CSCI211	-	Sprenkle	 48	

