Objectives

Dynamic Programming
Review: Weighted Interval Scheduling
Wrap up: Least Segmented Squares
Knapsack

Mar 23, 2018 CSCI211 - Sprenkle

Review

What is the new algorithm design technique
we’re learning?
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Review Solving

Dynamic Programming Problems
Determine optimal substructure of problem

Define the recurrence relation

Define algorithm to find the value of optimal
solution
Optionally, change algorithm to an iterative
rather than recursive solution
Define algorithm to find optimal solution

Analyze running time of algorithms

Map to weighted-interval scheduling
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Review: Weighted Interval Scheduling
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Review: Weighted Interval Scheduling
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What is the segmented least squares problem?
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Segmented Least Squares

Points lie roughly on a sequence of line segments

Given n points in the plane (x,, v,), (X,, ¥,) , - - ., (X, y,) with
X;< X, < ... <X, find a sequence of line segments that

minimizes f(x)

What's a reasonable choice for f(x) to
balance accuracy and parsimony!?

number of lines

goodness of fit
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Segmented Least Squares

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x,, y,), (X,, ¥,) , - - ., (X, y,) with
X, < X,< ... <X, find a sequence of line segments that minimizes:

E: sum of the sums of the squared errors in each segment
L: the number of lines
Tradeoff function: E + c L, for some constant c > 0.

How should we define
an optimal solution?
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Recall:

Properties of Problems for DP
Polynomial number of subproblems

Solution to original problem can be easily
computed from solutions to subproblems

Natural ordering of subproblems, easy to
compute recurrence

We need to:

* Figure out how to break the problem into subproblems
* Figure out how to compute solution from subproblems
* Define the recurrence relation between the problems
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Toward a Solution

Consider just the first or last point

What do we know about those points?
their segments? cost of a segment?
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Toward a Solution

p, can only belong to one segment
Segment: p,, ..., p,
Cost: c (cost for segment) + error of segment

What is the remaining problem?
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Toward a Solution

p, can only belong to one segment
Segment: p,, ..., p,
Cost: ¢ (cost for segment) + error of segment
What is the remaining problem?
Solve for py, ..., pig &

‘ Next: Formulate as a recurrence
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Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points py, pi,;, -, P;-
» e(i, J) = minimum sum of squares for points

Pis Pis1 s s P}

How do we compute OPT(j)?
» Last problem: binary decision (include job or not)
» This time: multiway decision
Which option do we choose?
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Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points py, pi,;, -, P;-
» e(i, j) = minimum sum of squares for points
Pis Pisy s - P
To compute OPT(j):
» Last segment contains points p, pi,4, - , p; for some i
» Cost = e(i, j) + c + OPT(i-1).

0 if j=0
min { e(i,j) + c+ OPT(i-1)} otherwise

l<isj

OPT(j)=
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Segmented Least Squares:

Algorithm Analysis How do we find the solution? |
INPUT: n, py,.,Pn, C

can be improved to O(n?) by

Segmented-Least-Squares() pre-computing various statistics
M[O] = @ ‘
2[0] [o] z
or j=1ton 3
for i =1 to j O(n°)

e[i][j] = least square error for the
segment p;,.., p;

for j =1+t
O(n?)  MLjl =

return M[n]

lnlslsj Ce[il[j]1 + c + M[i-1D

Bottleneck: computing e(i, j) for O(n?) pairs, O(n)
per pair using previous formula
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Post-Processing: Finding the Solution

FindSegments(j):
if j = 0:
output nothing
else:
Find an i that minimizes e; ; + ¢ + M[i-1]
Output the segment {p;, .., p 3
FindSegments(i-1)

Cost?| O(n?)

Call as: FindSegments(n)
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KNAPSACK
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Knapsack Problem

Given n objects and a “knapsack”

Item i weighs w; > 0 kilograms and has value v;>0

» Example: jobs require w; time

Knapsack has capacity of W kilograms

» Example: W is time interval that resource is available

Item

1

Value

1

Weight
1

Goal: fill knapsack so as E

6

to maximize total value

18

22
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Towards a Recurrence...

What do we know about the knapsack with
respect to item j?
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Towards a Recurrence...

What do we know about the knapsack with
respect to item i?
Either select item i or not
If don’t select
Pick optimum solution of remaining items
Otherwise

What happens?
How does problem change?
Formulate the recurrence
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Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i
Case 1: OPT does not select item i
OPT selects best of{ 1, 2, ..., i-1}
Case 2: OPT selects itemi

Accepting item i does not immediately imply that we
will have to reject other items

» No known conflicts

Without knowing what other items were selected
before i, we don't know if we have enough room for i

= Need more sub-problems!
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Dynamic Programming:
Adding a New Variable
Def. OPT(i, w) = max profit subset of items 1, ..., i
with weight limit w
Case 1: OPT does not select item i
OPT selects best of {1, 2, ..., i-1}
using weight limit w
Case 2: OPT selects item i
new weight limit = w - w;
OPT selects best of { 1, 2, ..., i-1}

using new weight limit, w — w;

0 if i=0
OPT(i,w)=1OPT(i—1,w) if w,>w
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Looking Ahead

Wiki due Monday
Chap 6: 6.1-6.3

PS8 due Friday
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