Objectives

Dynamic Programming
Review: Weighted Interval Scheduling
Wrap up: Least Segmented Squares
Knapsack

Mar 23, 2018 CSCI211 - Sprenkle

Review

What is the new algorithm design technique
we’re learning?

Mar 23, 2018 CSCI211 - Sprenkle

3/23/18

Review Solving

Dynamic Programming Problems
Determine optimal substructure of problem

Define the recurrence relation

Define algorithm to find the value of optimal
solution
Optionally, change algorithm to an iterative
rather than recursive solution
Define algorithm to find optimal solution

Analyze running time of algorithms

Map to weighted-interval scheduling

Mar 23, 2018 CSCI211 - Sprenkle 3

Review: Weighted Interval Scheduling

o
=
=

m Ao ® o » © © ©
o
D

Time

Mar 23, 2018 CSCI211 - Sprenkle 4

3/23/18

Review: Weighted Interval Scheduling

M[J] = maxCv; + M[p(30], M[j-11D

P()
0 -1
0
0 c3 A
A D-4
0 E-5
B 7 F;3 A
C G-3
E ol Time
0 3 5 6 7 8 9 10 I
M 0 B C D E F G H
0 2 3 5 5 5 6 6
Mar 23, 2018 CSCI211 - Sprenkle
Review

What is the segmented least squares problem?

Mar 23, 2018

CSCI211 - Sprenkle

3/23/18

3/23/18

Segmented Least Squares

Points lie roughly on a sequence of line segments

Given n points in the plane (x,, v,), (X,, ¥,) , - - ., (X, y,) with
X;< X, < ... <X, find a sequence of line segments that

minimizes f(x)

What's a reasonable choice for f(x) to
balance accuracy and parsimony!?

number of lines

goodness of fit

Mar 23, 2018 CSCI211 - Sprenkle

Segmented Least Squares

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x,, y,), (X,, ¥,) , - - ., (X, y,) with
X, < X,< ... <X, find a sequence of line segments that minimizes:

E: sum of the sums of the squared errors in each segment
L: the number of lines
Tradeoff function: E + c L, for some constant c > 0.

How should we define
an optimal solution?

/

X
Mar 23, 2018 CSCI211 - Sprenkle

Recall:

Properties of Problems for DP
Polynomial number of subproblems

Solution to original problem can be easily
computed from solutions to subproblems

Natural ordering of subproblems, easy to
compute recurrence

We need to:

* Figure out how to break the problem into subproblems
* Figure out how to compute solution from subproblems
* Define the recurrence relation between the problems

Mar 23, 2018 CSCI211 - Sprenkle 9

Toward a Solution

Consider just the first or last point

What do we know about those points?
their segments? cost of a segment?

@]
OO

00
e}
@)
o

o
Ooooé) 00 o0 0
o

(@)

oF

Mar 23, 2018 CSCI211 - Sprenkle 10

3/23/18

3/23/18

Toward a Solution

p, can only belong to one segment
Segment: p,, ..., p,
Cost: c (cost for segment) + error of segment

What is the remaining problem?

o O
OO

Y

o
© o0&

Mar 23, 2018 CSCI211 - Sprenkle 11

Toward a Solution

p, can only belong to one segment
Segment: p,, ..., p,
Cost: ¢ (cost for segment) + error of segment
What is the remaining problem?
Solve for py, ..., pig &

‘ Next: Formulate as a recurrence

0
coo0& 00 oo
0O

(@)

oF

Mar 23, 2018 CSCI211 - Sprenkle 12

Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points py, pi,;, -, P;-
» e(i, J) = minimum sum of squares for points

Pis Pis1 s s P}

How do we compute OPT(j)?
» Last problem: binary decision (include job or not)
» This time: multiway decision
Which option do we choose?

Mar 23, 2018 CSCI211 - Sprenkle 13

Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points py, pi,;, -, P;-
» e(i, j) = minimum sum of squares for points
Pis Pisy s - P
To compute OPT(j):
» Last segment contains points p, pi,4, - , p; for some i
» Cost = e(i, j) + c + OPT(i-1).

0 if j=0
min { e(i,j) + c+ OPT(i-1)} otherwise

l<isj

OPT(j)=

Mar 23, 2018 CSCI211 - Sprenkle 14

3/23/18

Segmented Least Squares:

Algorithm Analysis How do we find the solution? |
INPUT: n, py,.,Pn, C

can be improved to O(n?) by

Segmented-Least-Squares() pre-computing various statistics
M[O] = @ ‘
2[0] [o] z
or j=1ton 3
for i =1 to j O(n°)

e[i][j] = least square error for the
segment p;,.., p;

for j =1+t
O(n?) MLjl =

return M[n]

lnlslsj Ce[il[j]1 + c + M[i-1D

Bottleneck: computing e(i, j) for O(n?) pairs, O(n)
per pair using previous formula

Mar 23, 2018 CSCI211 - Sprenkle 15

Post-Processing: Finding the Solution

FindSegments(j):
if j = 0:
output nothing
else:
Find an i that minimizes e; ; + ¢ + M[i-1]
Output the segment {p;, .., p 3
FindSegments(i-1)

Cost?| O(n?)

Call as: FindSegments(n)

Mar 23, 2018 CSCI211 - Sprenkle 16

3/23/18

KNAPSACK

Mar 23, 2018 CSCI211 - Sprenkle

17

Knapsack Problem

Given n objects and a “knapsack”

Item i weighs w; > 0 kilograms and has value v;>0

» Example: jobs require w; time

Knapsack has capacity of W kilograms

» Example: W is time interval that resource is available

Item

1

Value

1

Weight
1

Goal: fill knapsack so as E

6

to maximize total value

18

22

Mar 23, 2018 CSCI211 - Sprenkle

2
3
4
5

28

N [jo (o N

3/23/18

Towards a Recurrence...

What do we know about the knapsack with
respect to item j?

Mar 23, 2018 CSCI211 - Sprenkle 19

Towards a Recurrence...

What do we know about the knapsack with
respect to item i?
Either select item i or not
If don’t select
Pick optimum solution of remaining items
Otherwise

What happens?
How does problem change?
Formulate the recurrence

Mar 23, 2018 CSCI211 - Sprenkle 20

3/23/18

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i
Case 1: OPT does not select item i
OPT selects best of{ 1, 2, ..., i-1}
Case 2: OPT selects itemi

Accepting item i does not immediately imply that we
will have to reject other items

» No known conflicts

Without knowing what other items were selected
before i, we don't know if we have enough room for i

= Need more sub-problems!

Mar 23, 2018 CSCI211 - Sprenkle 21

Dynamic Programming:
Adding a New Variable
Def. OPT(i, w) = max profit subset of items 1, ..., i
with weight limit w
Case 1: OPT does not select item i
OPT selects best of {1, 2, ..., i-1}
using weight limit w
Case 2: OPT selects item i
new weight limit = w - w;
OPT selects best of { 1, 2, ..., i-1}

using new weight limit, w — w;

0 if i=0
OPT(i,w)=1OPT(i—1,w) if w,>w

Mar 23, 2 max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise »

3/23/18

Looking Ahead

Wiki due Monday
Chap 6: 6.1-6.3

PS8 due Friday

Mar 23, 2018

CSCI211 - Sprenkle

23

3/23/18

