
3/23/18

1

Objec&ves	
• Dynamic	Programming	

Ø Review:	Weighted	Interval	Scheduling	
Ø Wrap	up:	Least	Segmented	Squares	
Ø Knapsack	

Mar	23,	2018	 1	CSCI211	-	Sprenkle	

Review	
• What	is	the	new	algorithm	design	technique	
we’re	learning?	

Mar	23,	2018	 2	CSCI211	-	Sprenkle	



3/23/18

2

Review	Solving		
Dynamic	Programming	Problems	
1.  Determine	op&mal	substructure	of	problem	

Ø  Define	the	recurrence	rela&on	
2.  Define	algorithm	to	find	the	value	of	op&mal	

solu&on	
3. Op&onally,	change	algorithm	to	an	itera)ve	

rather	than	recursive	solu&on	
4.  Define	algorithm	to	find	op)mal	solu)on	
5.  Analyze	running	&me	of	algorithms	

Mar	23,	2018	 CSCI211	-	Sprenkle	 3	

Map to weighted-interval scheduling

Review:	Weighted	Interval	Scheduling	

Mar	23,	2018	 CSCI211	-	Sprenkle	 4	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	3	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

P(j)

0

0

0

A

0

B

C

E



3/23/18

3

Review:	Weighted	Interval	Scheduling	

Mar	23,	2018	 CSCI211	-	Sprenkle	 5	

Time
0 1 2 3 4 5 6 7 8 9 10 11

F	-	3	

G	-	3	

H	-	1	

D	-	4	

C	-3	

A	-	1	

B	-	2	

E	-	5	

M

P(j)

0

0

0

A

0

B

C

E

0 A B C D E F G H 
0 1 2 3 5 5 5 6 6 

 M[j] = max(vj + M[p(j)], M[j-1])	

Review	
• What	is	the	segmented	least	squares	problem?	

Mar	23,	2018	 CSCI211	-	Sprenkle	 6	



3/23/18

4

Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	line	segments	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	
minimizes	f(x)	

Mar	23,	2018	 CSCI211	-	Sprenkle	 7	
x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to 
balance accuracy and parsimony?

Segmented	Least	Squares	
•  Points	lie	roughly	on	a	sequence	of	several	line	segments.	
•  Given	n	points	in	the	plane	(x1,	y1),	(x2,	y2)	,	.	.	.	,	(xn,	yn)	with		

x1	<	x2	<	...	<	xn,	find	a	sequence	of	line	segments	that	minimizes:	
Ø  E:	sum	of	the	sums	of	the	squared	errors	in	each	segment	
Ø  L:	the	number	of	lines	

•  Tradeoff	func5on:		E	+	c	L,	for	some	constant	c	>	0.	

Mar	23,	2018	 CSCI211	-	Sprenkle	 8	
x

y

How should we define 
an optimal solution?



3/23/18

5

Recall:		
Proper&es	of	Problems	for	DP	
• Polynomial	number	of	subproblems	
• Solu&on	to	original	problem	can	be	easily	
computed	from	solu&ons	to	subproblems	

• Natural	ordering	of	subproblems,	easy	to	
compute	recurrence	

Mar	23,	2018	 CSCI211	-	Sprenkle	 9	

We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

Toward	a	Solu&on	
• Consider	just	the	first	or	last	point	

Mar	23,	2018	 CSCI211	-	Sprenkle	 10	

x

y

What do we know about those points?  
their segments?  cost of a segment?



3/23/18

6

Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	

Mar	23,	2018	 CSCI211	-	Sprenkle	 11	

x

y

Toward	a	Solu&on	
• pn	can	only	belong	to	one	segment	

Ø Segment:	pi,	…,	pn	
Ø Cost:	c	(cost	for	segment)	+	error	of	segment	

• What	is	the	remaining	problem?	
Ø Solve	for	p1,	…,	pi-1	

Mar	23,	2018	 CSCI211	-	Sprenkle	 12	

x

y

Next:  Formulate as a recurrence



3/23/18

7

Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• How	do	we	compute	OPT(j)?	
Ø Last	problem:	binary	decision	(include	job	or	not)	
Ø This	&me:	mul5way	decision	

• Which	op&on	do	we	choose?	
	

Mar	23,	2018	 CSCI211	-	Sprenkle	 13	

Dynamic	Programming:	Mul&way	Choice	
• Nota&on.	

Ø OPT(j)	=	minimum	cost	for	points	p1,	pi+1	,	…	,	pj.	
Ø e(i,	j)		=	minimum	sum	of	squares	for	points		
pi,	pi+1	,	…,	pj.	

• To	compute	OPT(j):	
Ø Last	segment	contains	points	pi,	pi+1,	…	,	pj	for	some	i	
Ø Cost	=	e(i,	j)	+	c	+	OPT(i-1).	

Mar	23,	2018	 CSCI211	-	Sprenkle	 14	

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 



3/23/18

8

Segmented	Least	Squares:	
	Algorithm	Analysis	

• Boileneck:	compu&ng	e(i,	j)	for	O(n2)	pairs,	O(n)	
per	pair	using	previous	formula	

Mar	23,	2018	 CSCI211	-	Sprenkle	 15	

can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pn , c

Segmented-Least-Squares()
   M[0] = 0
   e[0][0] = 0
   for j = 1 to n
      for i = 1 to j
         e[i][j] = least square error for the  
         segment pi,…, pj

   for j = 1 to n
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])

   return M[n]

O(n3)

can be improved to O(n2) by 
pre-computing various statistics

O(n2)

How do we find the solution?

Post-Processing:	Finding	the	Solu&on	

Mar	23,	2018	 CSCI211	-	Sprenkle	 16	

FindSegments(j):
if j = 0:

output nothing
else:

Find an i that minimizes ei,j + c + M[i-1]
Output the segment {pi, …, pj}
FindSegments(i-1)  

Cost? O(n2)

Call as: FindSegments(n)



3/23/18

9

KNAPSACK	

Mar	23,	2018	 CSCI211	-	Sprenkle	 17	

Knapsack	Problem	
• Given	n	objects	and	a	“knapsack”	
•  Item	i	weighs	wi		>	0	kilograms	and	has	value	vi	>	0	

Ø Example:	jobs	require	wi		&me	

• Knapsack	has	capacity	of	W	kilograms	
Ø Example:	W	is	&me	interval	that	resource	is	available	

• Greedy:		repeatedly	add	item	with	maximum	
ra&o	vi	/	wi.	

• Ex:		{	5,	2,	1	}	achieves	only	value	=	35		⇒		greedy	
not	op&mal.	

Mar	23,	2018	 CSCI211	-	Sprenkle	 18	

1	

Value	

18	

22	

28	

1	

Weight	

5	

6	

6	 2	

7	

Item	

1	

3	

4	

5	

2	
W	=	11	Goal: fill knapsack so as 

to maximize total value



3/23/18

10

Towards	a	Recurrence…	
• What	do	we	know	about	the	knapsack	with	
respect	to	item	i?	

Mar	23,	2018	 CSCI211	-	Sprenkle	 19	

Towards	a	Recurrence…	
• What	do	we	know	about	the	knapsack	with	
respect	to	item	i?	
Ø Either	select	item	i	or	not	
Ø If	don’t	select	

• Pick	op&mum	solu&on	of	remaining	items	
Ø Otherwise	

Mar	23,	2018	 CSCI211	-	Sprenkle	 20	

What happens?
How does problem change?
Formulate the recurrence



3/23/18

11

Dynamic	Programming:	False	Start	
• Def.		OPT(i)	=	max	profit	subset	of	items	1,	…,	i	

Ø Case	1:	OPT	does	not	select	item	i	
• OPT	selects	best	of	{	1,	2,	…,	i-1	}		

Ø Case	2:		OPT	selects	item	i	
• Accep&ng	item	i	does	not	immediately	imply	that	we	
will	have	to	reject	other	items	
Ø No	known	conflicts	

• Without	knowing	what	other	items	were	selected	
before	i,	we	don't	know	if	we	have	enough	room	for	i	

Mar	23,	2018	 CSCI211	-	Sprenkle	 21	

➡ Need more sub-problems!

Dynamic	Programming:		
Adding	a	New	Variable	
• Def.	OPT(i,	w)	=	max	profit	subset	of	items	1,	…,	i	
with	weight	limit	w	
Ø Case	1:	OPT	does	not	select	item	i	

• OPT	selects	best	of	{	1,	2,	…,	i-1	}		
using	weight	limit	w		

Ø Case	2:	OPT	selects	item	i	
• new	weight	limit	=	w	–	wi	

• OPT	selects	best	of	{	1,	2,	…,	i–1	}		
using	new	weight	limit,	w	–	wi	

Mar	23,	2018	 CSCI211	-	Sprenkle	 22	  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 



3/23/18

12

Looking	Ahead	
• Wiki	due	Monday	

Ø Chap	6:	6.1-6.3	
• PS8	due	Friday	

Mar	23,	2018	 CSCI211	-	Sprenkle	 23	


