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Objec&ves	
• Network	Flow	

Ø Circula&on	
Ø Applica&on:	Survey	Design	
Ø Applica&on:	Airline	Scheduling	
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Review	
• What	is	a	flow	network?	
• What	is	our	usual	goal	given	a	flow	network?	

Ø How	do	we	reach	that	goal?	
• What	is	the	Ford-Fulkerson	algorithm?	
• What	is	the	min-cut?	

Ø How	does	it	relate	to	the	max	flow?	
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Review:	Network	Flows	
•  An	s-t	flow	is	a	func&on	that	sa&sfies	

Ø  Capacity	condi,on:	For	each	e	∈	E:	0	≤	f(e)	≤	c(e)	
Ø  Conserva.on	condi,on:	For	each	v	∈	V	–	{s,	t}:									∑e	into	y		

f(e)	=		∑e	out	of	y		f(e)	
•  The	value	of	a	flow	f	is	v(f)	=	∑e	out	of	s		f(e)									
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Review:	Cer&ficate	of	Op&mality	
• Corollary.		Let	f	be	any	flow,	and	let	(A,	B)	be	any	
cut.		If	v(f)	=	cap(A,	B),	then	f	is	a	max	flow	and	
(A,	B)	is	a	min	cut.	
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Value of flow = 28�
Cut capacity  = 28   ⇒�

Flow value ≤ 28
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Review:	Ford-Fulkerson	Algorithm	
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Flow value = 19

Cut capacity = 19

• What do we know about the flow out of A?
• What do we know about the flow into A?

A
• All edges out of A are completely saturated
• All edges into A are completely unused

A

Max-Flow	Min-Cut	Theorem	

• Proof	strategy.		Prove	both	simultaneously	by	
showing	the	following	are	equivalent:	
			(i)	There	exists	a	cut	(A,	B)	such	that	v(f)	=	cap(A,	B).	
			(ii)	Flow	f	is	a	max	flow.	
		(iii)	There	is	no	augmen&ng	path	rela&ve	to	f.	
	 6	Apr	2,	2018	 CSCI211	-	Sprenkle	

Max-flow min-cut theorem.  [Ford-Fulkerson 1956] �
The value of the max flow is equal to the value of the min cut.

Augmenting path theorem.  �
Flow f is a max flow iff there are no augmenting paths. 

See formal proof in book



4/2/18

4

Analyzing	Augmen&ng	Path	Algorithm	
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Ford-Fulkerson(G, s, t, c)
   foreach e ∈ E  f(e) = 0  # initially no flow
   Gf = residual graph

   while there exists augmenting path P
      f = Augment(f, c, P)     # change the flow
      update Gf   # build a new residual graph

   return f

Augment(f, c, P)
   b = bottleneck(P) # edge on P with least capacity
   foreach e ∈ P
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow
      else       f(eR) = f(e) - b  # forward edge, ê flow 
   return f

Analyzing	Augmen&ng	Path	Algorithm	
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Ford-Fulkerson(G, s, t, c)
   foreach e ∈ E  f(e) = 0  # initially no flow
   Gf = residual graph

   while there exists augmenting path P
      f = Augment(f, c, P)     # change the flow
      update Gf   # build a new residual graph

   return f

Augment(f, c, P)
   b = bottleneck(P) # edge on P with least capacity
   foreach e ∈ P
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow
      else       f(eR) = f(e) - b  # forward edge, ê flow 
   return f

O(m)

O(m)

O(m)

O(m)

O(n)
O(n)

O(1)
O(1)

Total:	O(n)	à	O(m),	since	n	≤	2m	

Total:	O(Fm)	

Find path: O(m);  Iterations: O(F) iterations, where F = max flow
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Running	Time	
•  Assump&on.		All	capaci&es	are	integers	between	1	and	F.	
•  Invariant.		Every	flow	value	f(e)	and	every	residual	capacity’s	

cf(e)	remains	an	integer	throughout	algorithm.	

•  Theorem.	Algorithm	terminates	in	at	most	v(f*)	≤	nF	itera&ons.	
•  Pf.		Each	augmenta&on	increases	value	by	at	least	1.	
•  Corollary.		If	F	=	1,	Ford-Fulkerson	runs	in	O(mn)	&me.	

•  Integrality	theorem.		If	all	capaci&es	are	integers,	then	there	
exists	a	max	flow	f	for	which	every	flow	value	f(e)	is	an	integer.	

•  Pf.		Since	algorithm	terminates,	theorem	follows	from	
invariant.		

9	Apr	2,	2018	 CSCI211	-	Sprenkle	

Power	of	Max	Flow	Problem	
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Some problems with non-trivial combinatorial searches 
can be formulated as max flow or�

 min cut in a directed graph
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BIPARTITE	MATCHING	
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Bipar&te	Matching	
•  Input:	undirected,	bipar&te	graph	G	=	(L	∪	R,	E)	

Ø  Edges:	one	end	in	L,	one	end	in	R	
•  Matching	M	⊆	E	such	that	each	node	appears	in	at	most	1	

edge	in	M.	
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Bipar&te	Matching	
•  Input:	undirected,	bipar&te	graph	G	=	(L	∪	R,	E)	

Ø  Edges:	one	end	in	L,	one	end	in	R	
•  Matching	M	⊆	E	such	that	each	node	appears	in	at	most	1	

edge	in	M.	
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Problem: find matching of largest possible size

Can we do better?

Bipar&te	Matching	
•  Input:	undirected,	bipar&te	graph	G	=	(L	∪	R,	E)	

Ø  Edges:	one	end	in	L,	one	end	in	R	
•  Matching	M	⊆	E	such	that	each	node	appears	in	at	most	1	

edge	in	M.	
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Max	Flow	Formula&on	
1.  Create	digraph	G'	=	(L	∪	R	∪	{s,	t},		E'	)	
2.  Direct	all	edges	from	L	to	R,	and	assign	unit	capacity	
3.  Add	source	s,	and	unit	capacity	edges	from	s	to	each	node	in	

L	
4.  Add	sink	t,	and	unit	capacity	edges	from	each	node	in	R	to	t	
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Bipar&te	Matching:	Proof	of	Correctness	
• Theorem.	Max	cardinality	matching	in	G	=	value	
of	max	flow	in	G'.	

• Proof:	Need	to	show	in	both	direc&ons	
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Bipar&te	Matching:	Proof	of	Correctness	
•  Theorem.	Max	cardinality	matching	in	G	=	value	of	max	
flow	in	G'.	

•  Pf.		à	
Ø Given	max	matching	M	of	cardinality	k.	
Ø  Consider	flow	f	that	sends	1	unit	along	each	of	k	paths.	
Ø  f	is	a	flow	and	has	cardinality	k.			▪	
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Bipar&te	Matching:	Proof	of	Correctness	
•  Theorem.	Max	cardinality	matching	in	G	=	value	of	max	flow	in	G'.	
•  Pf.		ß	

Ø  Let	f	be	a	max	flow	in	G'	of	value	k.	
Ø  Integrality	theorem		⇒		k	is	integral	and	can	assume	f	is	0-1.	
Ø  Consider	M	=	set	of	edges	from	L	to	R	with	f(e)	=	1.	

•  each	node	in	L	and	R	par&cipates	in	at	most	one	edge	in	M	
•  |M|	=	k:		consider	cut	(L	∪	s,	R	∪	t)			▪	
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Network	Flow	Solu&ons	
1.  Model	problem	as	a	flow	network	

Ø  Describe	what	nodes,	edges,	and	capacity	represent	
Ø  Describe	what	flow	represents	and	how	that	maps	to	

your	solu&on	
Ø  Run	Ford-Fulkerson	algorithm	

2.  Prove	that	the	solu&on	found	is	correct/feasible/
op&mal	

3.  Prove	that	you	find	all	solu&ons	
4.  Analyze	running	&me	

Ø  Crea&ng	model	
Ø  FF	algorithm	

Apr	2,	2018	 CSCI211	-	Sprenkle	 19	

EXTENSIONS	TO	MAX	FLOW	
Sec&on	7.7	
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Circula&on	with	Demands	
• Directed	graph	G	=	(V,	E)	
• Edge	capaci&es	c(e),	e	∈	E	
• Node	supply	and	demands	d(v),	v	∈	V	
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•  d(v) > 0 à demand
•  d(v) < 0 à supply
•  d(v) = 0 à transshipment

Example	Graph:		
Circula&on	with	Demands	
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Circula&on	with	Demands	
• Circula&on	with	demands	

Ø Directed	graph	G	=	(V,	E)	
Ø Edge	capaci&es	c(e),	e	∈	E	
Ø Node	supply	and	demands	d(v),	v	∈	V	

• Def.		A	circula.on	is	a	func&on	that	sa&sfies:	
Ø For	each	e	∈	E:		0	≤	f(e)	≤	c(e) 									(capacity)	
Ø For	each	v	∈	V: 	 	 									(conserva&on)	

Apr	2,	2018	 CSCI211	-	Sprenkle	 23	

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Circulation problem: �
given (V, E, c, d),  does a circulation exist?

(Can we satisfy demand with supply?)

Example	Graph:		
Circula&on	with	Demands	
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Circula&on	with	Demands	
• Necessary	condi&on:			
			sum	of	supplies	=	sum	of	demands	
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Sum of supplies?  Demands?

Circula&on	with	Demands:	
	Towards	Max	Flow	Formula&on	
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Circula&on	with	Demands:	
	 	Max	Flow	Formula&on	

•  Add	new	source	s	and	sink	t	
•  For	each	v	with	d(v)	<	0,	add	edge	(s,	v)	with	capacity	-d(v)	
•  For	each	v	with	d(v)	>	0,	add	edge	(v,	t)	with	capacity		d(v)	
•  Claim:	G	has	circula.on	iff	G'	has	max	flow	of	value	D	
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Circula&on	with	Demands:	Characteriza&on	

• Given	(V,	E,	c,	d),	there	does	not	exist	a	
circula&on	iff	there	exists	a	node	par&&on		
(A,	B)	such	that		

	 	Σv∈B	dv	>	cap(A,	B)	

• Proof?	
Ø What	can	we	use	to	prove	this?	
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supply of nodes in B + �
max capacity of edges going from A à B

demand by
nodes in B

exceeds 
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Circula&on	with	Demands:	Characteriza&on	

• Given	(V,	E,	c,	d),	there	does	not	exist	a	
circula&on	iff	there	exists	a	node	par&&on		
(A,	B)	such	that		

	 	Σv∈B	dv	>	cap(A,	B)	

• Pf	idea.		Look	at	min	cut	in	G'.	
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supply of nodes in B + �
max capacity of edges going from A à B

demand by
nodes in B

exceeds 

ANOTHER	EXTENSION:	LOWER	
BOUNDS	
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Circula&on	with	Demands	and		
Lower	Bounds	
• Feasible	circula&on	

Ø Directed	graph	G	=	(V,	E)			
Ø Edge	capaci&es	c(e)	and	lower	bounds	ℓ	(e),	e	∈	E	
Ø Node	supply	and	demands	d(v),	v	∈	V	

• Def.		A	circula*on	is	a	func&on	that	sa&sfies:	
Ø For	each	e	∈	E:	0	≤	ℓ	(e)	≤	f(e)	≤	c(e) 						(capacity)	
Ø For	each	v	∈	V: 	 	 	 	(conserva&on)	

Apr	2,	2018	 CSCI211	-	Sprenkle	 31	

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Circulation problem with lower bounds.�
Given (V, E, ℓ, c, d), does a circulation exist?

Force flow to use�
 certain edges

Circula&on	with	Demands	and		
Lower	Bounds	

• Model	lower	bounds	with	demands	
Ø Send	ℓ(e)	units	of	flow	along	edge	e	
Ø Update	demands	of	both	endpoints	
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capacity

Proof in book

Supply and demand decrease
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Circula&on	with	Demands	and		
Lower	Bounds	
• Feasible	circula&on	

Ø Directed	graph	G	=	(V,	E)			
Ø Edge	capaci&es	c(e)	and	lower	bounds	ℓ	(e),	e	∈	E	
Ø Node	supply	and	demands	d(v),	v	∈	V	

• Def.		A	circula*on	is	a	func&on	that	sa&sfies:	
Ø For	each	e	∈	E:	0	≤	ℓ	(e)	≤	f(e)	≤	c(e) 						(capacity)	
Ø For	each	v	∈	V: 	 	 	 	(conserva&on)	
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€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Circulation problem with lower bounds.�
Given (V, E, ℓ, c, d), does a circulation exist?

Force flow to use�
 certain edges

7.8	SURVEY	DESIGN	
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Survey	Design	
• Design	survey	asking	consumers	about	products	
• Can	only	survey	a	consumer	about	a	product	if	
they	own	it	
Ø Consumer	can	own	mul&ple	products	

• Ask	consumer	i	between	ci	and	ci’	ques&ons	
• Ask	between	pj	and	pj’	consumers	about	product	

j

Apr	2,	2018	 CSCI211	-	Sprenkle	 35	

Goal: Design a survey that meets these specs, if possible.

How can we model this problem?

Model:	Bipar&te	Graph	
• Nodes:	customers	and	products	
• Edge	between	customer	and	product	means	
customer	owns	product	

• For	each	customer,	range	of	#	of	products	asked	
about	

• For	each	product,	range	of	#	of	customers	asked	
about	it	
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What does the flow represent?
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What do these 
edges mean?

Survey	Design	Algorithm	
• Formulate	as	a	circula&on	problem	with	lower	
bounds	
Ø  Include	an	edge	(i,	j)	if	customer	i	owns	product	j	
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Survey	Design	Algorithm	
• Formulate	as	a	circula&on	problem	with	lower	
bounds	
Ø  Include	an	edge	(i,	j)	if	customer	i	owns	product	j	
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Survey	Solu&on	
•  If	a	feasible,	integer	flow	solu&on,	can	create	the	
survey	

• Customer	i	will	be	surveyed	about	product	j	iff	
the	edge	(i,j)	carries	a	unit	of	flow	
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Survey	Solu&on	-	Analysis	
• How	do	we	know	that	the	solu&on	found	is	
correct/feasible/op&mal?	

• How	do	we	know	that	we	found	all	solu&ons?	
• Analyze	run	&me	

Ø Crea&ng	model	
Ø FF	algorithm		
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Looking	Ahead	
• Problem	Set	9	–	due	Friday	

• Course	Evalua&ons,	due	Sunday	
Ø Up	to	5%	added	to	your	problem	set	score	
Ø If	60%	of	students	complete,	1%	added	to	problem	
set	

Ø For	each	addi&onal	10%	of	class	that	completes	
survey,	addi&onal	1%	bonus	added	to	problem	set	
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