

Analyzing Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c)
foreach e \in E f(e) = 0 # initially no flow
   G_f = residual graph
   while there exists augmenting path P
       f = Augment(f, c, P)
                                  # change the flow
                               # build a new residual graph
       update G_{f}
   return f
Augment(f, c, P)
   b = bottleneck(P) # edge on P with least capacity
   foreach e \in P
       if (e \in E) f(e) = f(e) + b # forward edge, \uparrow flow
                   f(e^{R}) = f(e) - b # forward edge, \Psi flow
       else
   return f
Apr 4, 2018
                           CSCI211 - Sprenkle
                                                                  3
```


SC	<mark>hedul</mark> Mainter	ing Plane	es : 1 hour		
	Number	Origin	Departure	Destination	Arrival
	1	Boston	6 a.m.	DC	7 a.m.
	2	Philadelphia	7 a.m.	Pittsburgh	8 a.m.
	3	DC	8 a.m.	LAX	11 a.m.
	4	Philadelphia	11 a.m.	San Francisco	2 p.m.
	5	San Francisco	2:15 p.m.	Seattle	3:15 p.m.
	6	Las Vegas	5 p.m.	Seattle	6 p.m.
	W	'hat is a valid us	se of one pla	ine for > 1 seg	ment?
Apr 4, 2018 CSCI211 - Sprenkle					

Scheduling PlanesMaintenance time: 1 hour									
	Number	Origin	Departure	Destination	Arrival				
	1	Boston	6 a.m.	DC	7 a.m.				
	2	Philadelphia	7 a.m.	Pittsburgh	8 a.m.				
	3	DC	8 a.m.	LAX	11 a.m.				
	4	Philadelphia	11 a.m.	San Francisco	2 p.m.				
	5	San Francisco	2:15 p.m.	Seattle	3:15 p.m.				
	6	Las Vegas	5 p.m.	Seattle	6 p.m.				
What is a valid use of one plane for > 1 segment?									
Ар	r 4, 2018		CSCI211 - Sprenkle	2		12			

Scheduling Planes Maintenance time: 1 hour 								
	Number	Origin	Departure	Destination	Arrival			
	1	Boston	6 a.m.	DC	7 a.m.			
	2	Philadelphia	7 a.m.	Pittsburgh	8 a.m.			
	3	DC	8 a.m.	LAX	11 a.m.			
	4	Philadelphia	11 a.m.	San Francisco	2 p.m.			
	5	San Francisco	2:15 p.m.	Seattle	3:15 p.m.			
	6	Las Vegas	5 p.m.	Seattle	6 p.m.			
Could we schedule all flights from previous example with only 2 planes?								
Apr 4, 2018 CSCI211 - Sprenkle						14		

Classify Problems According to Computational Requirements Which problems will we be able to solve in practice? Working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms. Yes **Probably no** Shortest path Longest path Matching 3D-matching Min cut Max cut 2-SAT 3-SAT Planar 4-color Planar 3-color Bipartite vertex cover Vertex cover Primality testing Factoring Apr 4, 2018 29

