
4/20/09

1

•  Many available tools
 UNIX & UNIX-like systems (e.g., Linux)
 Open-source (Gnu, Apache, Eclipse)
 Proprietary
 Variety of purposes

•  Know what (free) tools are available, what
they do, how to use them

•  Often have to do a task over and over again
 Time-intensive to do by hand
 Shortcuts aren’t enough

• What we want
 Tools to make tasks easier
 Scripts to be able to repeat the tasks easier

•  Command-line
•  Graphical/GUI interfaces

What are the benefits and limitations of each type of tool?

•  Benefits
 Flexible--lots of options
 After run once, can run again in same terminal using up

arrow key or using !command
 Tab-completion
 Automation: Can be put into bash scripts and repeated

•  Limitations
 Requires knowing name of command
 Requires knowing syntax of command, options

•  Easy to screw up!
 Slower learning curve

•  Benefits
 Require less knowledge of syntax
 Generally: faster learning curve

•  Limitations
 Can require many clicks to do even simple

operations
 May require a lot of set up/configuration
 Harder to automate, repeat tasks

4/20/09

2

•  Unix tools
•  Bash scripting
•  Software development tools

Our Focus

Design

Evaluate Implement

Test/
Get feedback
from users

Deployment

Requirements • What are they?

• What is the goal of software tools?

• What is an IDE and its goal?

•  At the end of this course, you will be able to
 Use a variety of Unix tools
 Apply a variety of tools to automate many tasks
 Describe the use of state-of-the-art software tools for

developing and maintaining large software systems,
based on hands-on experience

 Discuss when best to use different tools, the limitations
of the tools, and what they have to offer

 Discuss the challenges and strategies in building
software tools

 Communicate technical content in both oral and written
forms

•  Improve your productivity
•  Unix confidence/proficiency

 To intermediate user
•  Tool confidence

 Less intimidated by installing, learning new tools
•  Resume builder!

 Impress potential employers, advisors

•  Non-goal: System Administrator

4/20/09

3

•  Material is most relevant in context
 Need to make it relevant to you
 What would you like to do--now or in the future?
 What tools interest you?

•  Actively explore tools
 Try out everything we do
 Make mistakes and learn from them

•  (42%) Individual programming, reading, and
homework assignments

•  (15%) Midterm Exam
•  (36%) Tool Demonstrations
•  (7%) Professionalism: participation and

attendance

Ken Thompson Dennis Ritchie

•  Doug McIlroy, inventor of Unix pipes, a
founder of Unix tradition:

This is the Unix philosophy: Write programs that
do one thing and do it well. Write programs to
work together. Write programs to handle text
streams, because that is a universal interface

•  This is usually severely abridged to “do one
thing and do it well”

•  Make each program do one thing well
 More complex functionality by combining

programs
 Make every program a filter
 More efficient
 Better for reuse

4/20/09

4

•  Scripting increases leverage and portability

who | awk '{print $1}' | sort | uniq	

List the usernames of a system’s current users:

We’ll talk more about piping
on Wednesday…

•  Avoid captive interfaces
 The user of a program isn’t always human
 Look nice, but code is big and ugly
 Problems with scale

•  Silence is golden
 Only report if something is wrong

•  Think hierarchically

•  Portability
 Because implemented in C rather than assembly

language (specific to machine), ran on variety of
machines

•  TCP/IP implementation -- 1984
 Communicate btw different machines from

different vendors
•  Hierarchical file system; the file abstraction
•  Multitasking and multiuser capability for

minicomputer

•  Inter-process communication
 Pipes: output of one programmed fed into input

of another
•  Software tools
•  Development tools
•  Scripting languages

•  "Unix is simple. It just takes a genius to understand
its simplicity." – Dennis Ritchie

•  "UNIX was not designed to stop its users from
doing stupid things, as that would also stop them
from doing clever things." – Doug Gwyn

•  "Unix never says 'please'." – Rob Pike
•  "Unix is user-friendly. It just isn't promiscuous about

which users it's friendly with." – Steven King
•  "Those who don't understand UNIX are condemned

to reinvent it, poorly." – Henry Spencer

4/20/09

5

•  The government of your computer
•  Kernel: Performs critical system functions

and interacts with the hardware
 Loaded into memory during the boot process,

and always stays in physical memory
 Responsible for managing CPU and memory for

processes, managing file systems, and
interacting with devices

•  Systems utilities: Programs and libraries that
provide various functions through system
calls to the kernel

User Space!

Kernel!

Devices!

system calls!

device drivers!

shell scripts! utilities!

compilers!

signal handler! scheduler!

swapper!

terminal!

disk!

printer!

RAM!

C programs!

Kernel:
lowest-level,

or 'inner-most'
component

user

 shell and utilities

kernel

hardware

c programs
scripts

ls 
ksh	

gcc 
find	

open() 
fork() 
exec()	

•  User interface to the operating system
•  A program like any other
•  Command-line interpreter
•  Functionality:

 Execute other programs
 Manage files
 Manage processes

•  Basic form of shell:
while <read command>:	
	parse command 
execute command

hides details of underlying
operating system

• /bin/sh The Bourne Shell / POSIX shell
• /bin/csh C shell
• /bin/tcsh Enhanced C Shell
• /bin/ksh Korn shell
• /bin/bash Free ksh clone

Which shell do we use in the lab?

• When you open a terminal, you interactively
use the shell:
 Command history
 Command line editing
 File expansion (tab completion)
 Command expansion
 Key bindings
 Job control

4/20/09

6

•  A set of shell commands that constitute an
executable program

•  A shell script is a regular text file that
contains shell or UNIX commands

•  Very useful for automating repetitive tasks
and administrative tools and for storing
commands for later execution

More on this later…

•  Sequence of non-blank arguments separated
by blanks or tabs

•  1st argument (numbered 0) usually specifies
the name of the command to be executed

•  Any remaining arguments:
 Are passed as arguments to that command
 Depending on command, arguments may be

filenames, pathnames, directories or special
options

 Special characters are interpreted by shell

$ ls –l /bin 
-rwxr-xr-x 3 root root 63216 Sep 7 2006 zcat 
$ 	

prompt command arguments

•  Execute a basic command
•  Parsing into command and arguments is

called splitting

•  Options/Flags
 Convention: -X or --longname

•  Parameters
 May be files, may be strings
 Depends on command

$ tar –c –v –f archive.tar main.c main.h	

•  File/Directory Management
•  Process Management

•  How is Unix’s directory structure organized?

4/20/09

7

/	

tmp	 etc	 bin	

bin	 lib	 foo	 rm	 pwd	

usr	

more	

foo	
rm 
pwd 
more	

 A sequence of characters other than slash
Case sensitive

etc	
usr 
lib 
bin	

 Holds a set of files or other directories
Case sensitive

/	

tmp	 etc	 bin	

bin	 lib	 foo	 rm	 pwd	

usr	

more	 /usr/bin/more	

 A sequence of directory names followed by a simple
filename, each separated from the previous one by a /

/	

tmp	 etc	 bin	

bin	 lib	 foo	 rm	 pwd	

usr	

more	

Directory the process is currently in.
One per process.

/	

tmp	 etc	 bin	

bin	 lib	 foo	 rm	 pwd	

usr	

more	 more 
./more 
../bin/more	

 A pathname relative to the working directory (as
opposed to absolute pathname)

 .. = parent directory
. = current directory

/	

tmp	 etc	 bin	

bin	 lib	 foo	 rm	 pwd	

usr	

more	

4/20/09

8

•  Files are just a sequence of bytes
 No file types (data vs. executable)
 No sections
 Example of UNIX philosophy

•  Directories are a list of files and status of the
files:
 Creation date
 Attributes
 etc.

•  How do you see a directory’s contents?
 How can you find out more information about the

contents?
 How can you list the content in time order?

•  How do you go into a directory?
 Home directory?
 Parent directory?

•  How can you help avoid a lot of typing when
you’re trying to go into a directory?

•  Each user has a home directory
•  Most shells (ksh, csh) support ~ operator:

 ~ expands to my home directory
• ~/myfile  /home/kornj/myfile	

 ~user expands to user’s home directory
• ~unixtool/file2  /home/unixtool/file2	

•  Useful because home directory locations
vary by machine

What is your home directory?

•  How do you know what directory you’re in?

•  How do you make a new directory?
 How do you make a series of directories, for

example cs297/practice/tmp, in one
command?

 What if cs297/practice/ doesn’t exist?

•  How do you delete an empty directory?

•  How do you copy a file?
 A directory and its contents?

•  How do you move/rename a file?
• What is the short cut for the current

directory?
•  How do you delete a file?
•  How do you delete a whole directory?

• cat can be used to display the contents of a
file in the terminal
 When invoked with a list of file names, it

concatenates them
•  Some options:

 -n number output lines (starting from 1)
 -v display control-characters in visible

 form (e.g. ^C)

Practice: handouts directory’s last name file
 Do not cd into that directory

4/20/09

9

•  Interactive commands more and less show
a page at a time
 Searching with /

•  To view the beginning of a file
 head
 Use -# to view more or fewer lines

•  To view the end of a file
 tail
 Use -# to view more or fewer lines

• man: display entries from UNIX online documentation
• whatis, apropos
•  Manual entries organization:

 1. Commands
 2. System calls
 3. Subroutines
 4. Special files
 5. File format and conventions
 6. Games
 7. Miscellanea
 8. System administration commands and daemons

http://en.wikipedia.org/wiki/Unix_manual	

•  UNIX systems have one or more users,
identified with a number and name

•  A set of users can form a group. A user can
be a member of multiple groups
 A special user (id 0, name root) has

complete control
 Each user has a primary (default)

group

See what groups you belong to…

•  Used to determine if file or process
operations can be performed:
 Can a given file be read? written to?
 Can this program be run?
 Can I use this piece of hardware?
 Can I stop a particular process that’s running?

•  UNIX provides a way to protect files based on users
and groups

•  Three types of permissions:
 Read: process may read contents of file
 Write: process may write contents of file
 Execute: process may execute file

•  Three sets of permissions:
 permissions for owner
 permissions for group (1 group per file)
 permissions for other

4/20/09

10

$ ls –l /bin 
-rwxr-xr-x 3 root root 63216 Sep 7 2006 zcat 
$ 	

read write execute

•  Same types and sets of permissions as for
files:
 read: process may read the directory contents

(i.e., list files)
 write: process may add/remove files in the

directory
 execute: process may open files in directory or

subdirectories

•  Categories: owner, group, others
•  Permissions: read, write, execute
[sprenkle@hopper courses]$ ls -l /home/courses/cs209/handouts/	
total 16	
drwxr-x--- 3 sprenkle cs297 4096 2009-04-17 16:00 ./	
drwxr-x--- 5 sprenkle cs297 4096 2009-04-15 16:20 ../	
drwxr-xr-x 2 sprenkle faculty 4096 2009-04-17 12:57 day1/	
-rw-r--r-- 1 sprenkle faculty 0 2009-04-17 16:00 tmp	
permissions owner group size date modified file name

•  Categories: owner, group, others
•  Permissions: read, write, execute
[sprenkle@hopper courses]$ ls -l /home/courses/cs209/handouts/	
total 16	
drwxr-x--- 3 sprenkle cs297 4096 2009-04-17 16:00 ./	
drwxr-x--- 5 sprenkle cs297 4096 2009-04-15 16:20 ../	
drwxr-xr-x 2 sprenkle faculty 4096 2009-04-17 12:57 day1/	
-rw-r--r-- 1 sprenkle faculty 0 2009-04-17 16:00 tmp	
permissions owner group size date modified file name

• What are the permissions on the file tmp?
• In the permissions, how can we distinguish between an
executable file and directory?

• What does it mean for a file to be executable?

usr	 etc	home	

/	

courses	students	 www	 tmp	faculty	

Your home
directories

cs297	

cs111	

labs	

handouts	turnin	

Your web
pages

Look at permissions

“root” directory:	

…	 usr	 etc	home	

/	

courses	students	 www	 tmp	faculty	

Your home
directories

cs297	

cs111	

labs	

handouts	turnin	

Your web
pages

Paths through tree

“root” directory:	

…	

Special
permissions for

world to see

Special
permissions
for only you

to see
Special

permissions
for me to see

Special
permissions for

class to see

4/20/09

11

• chmod change file permissions
• chown change file owner
• chgrp change file group
• umask user file creation mode mask

•  Only owner or super-user can change file
attributes

•  Upon creation, default permissions given to
file modified by process’s umask value

• chmod command
 Syntax: chmod [options] <mode> <file(s)>	

•  Examples:
chmod u+x script.sh	
chmod a-w readDir	
chmod -R ug+r myDir	
	Recursive

Shorthand Meaning
u User/owner
g Group
o Others
a All
r Read permission
w Write permission
x eXecutable

permission

•  Symbolic access modes {u,g,o} / {r,w,x}
 example: chmod +r file	

•  Octal access modes
octal read write execute

0 No No No
1 No No Yes
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes No Yes
6 Yes Yes No
7 Yes Yes Yes

•  To change the owner of a file:
 chown <owner> <file(s)>	
 chown <owner:group> <file(s)>	
 -R recursive option available

•  To change the group of a file
 chgrp <group> <file(s)>	
 -R recursive option available

> ls –l	
public_html may be in different color than most entries

> ls public_html	

> ls –l public_html	

> ls –l /home/courses/cs297/	

Note: no / at end

From your home directory
•  Practice UNIX commands

 script command
•  Exploring UNIX commands

