
4/22/09 

1 

•  UNIX File Management Commands 
•  UNIX Process Management Commands 

• What is are some components of the UNIX 
philosophy? 

• What is a shell? 
• What is the syntax of a UNIX command? 
• What is the main security mechanism in 

UNIX? 

•  Make each program do one thing well 
 More complex functionality by combining 

programs 
 Make every program a filter 
 More efficient 
 Better for reuse 

•  Portability 
•  No GUIs 
•  Only error feedback 

•  User interface to the operating system 
•  Command-line interpreter 
•  Functionality: 

 Execute other programs 
 Manage files 
 Manage processes 

•  A program like any other 
•  Basic form of shell: 

while <read command>:	
	parse command 
execute command 

hides details of underlying 
operating system 

$ ls –l /bin 
-rwxr-xr-x  3 root   root   63216 Sep 7  2006 zcat 
$ 	

prompt command arguments 

•  Execute a basic command 
•  Parsing into command and  arguments is 

called splitting 



4/22/09 

2 

Command Purpose 
file	 Determine file type 
basename	 Strip directory and suffix from file names 
dirname	 Strip non-directory suffix from file name 
wc	 Print number of newlines, words, and bytes in 

files 
-l : lines 
-m : chars 
-w : words 

• echo $HISTFILE	
• file $HISTFILE	
• dirname $HISTFILE	
• basename $HISTFILE	
• wc $HISTFILE	
• wc –l $HISTFILE	

Command Purpose Options 
du	 estimate file space 

usage 
-h human readable 
-s summarize 

df	 report filesystem disk 
space usage 

-h human readable 

Many more options… 
See man page 

• du  Estimate file space usage (disk usage) 
 -h human readable format (e.g., MB, GB rather 

than KB) 
 -s summarize results for a directory 

•  Try out on your cs112 directory 

[sprenkle@pascal ~]$ du -s ~/public_html/	
785220 /home/faculty/sprenkle/public_html/	

[sprenkle@pascal ~]$ du -sh ~/public_html/	
767M  /home/faculty/sprenkle/public_html/	



4/22/09 

3 

• df   File system disk usage 
 -h human readable format (e.g., MB, GB rather 

than KB) 

[sprenkle@hopper ~]$ df -h	
Filesystem            Size  Used Avail Use% Mounted on	
/dev/sda2              48G  5.7G   40G  13% /	
/dev/sda4             163G  109G   46G  71% /hopper1	
/dev/sdb2             113G   58G   49G  55% /hopper3	
/dev/sdb1             114G   68G   41G  63% /hopper2	
/dev/sda1              99M   17M   77M  18% /boot	
tmpfs                 1.5G     0  1.5G   0% /dev/shm	
pascal:/exports/home  193G   72G  111G  40% /csdept/home	
pascal:/exports/local  49G  3.0G   43G   7% /csdept/local	

•  Often, you want to record when something 
happened or how long something takes 

• date	
 Prints out system’s current time 
 Lots of formatting options 

•  Example: date +'%A, %B %d, %Y’	
• time <simple command>	

 Measures command’s resource use 

•  Up arrow 
•  !command-prefix  

 ! = bang 
 Repeat most recent command that begins with 

prefix 

•  Examples: 
 mv file{,.bak}	

•  Expands to  mv file file.bak	
 tar cfz myDir{.tar.gz,}	

•  Expands to tar cfz myDir.tar.gz myDir	
 cp index.{html,php}	

•  Expands to cp index.html index.php	



4/22/09 

4 

•  Each process contains a 
table of files it has opened 

•  Inherits open files from 
parent 

•  Each open file is associated 
with a number or handle, 
called a file descriptor (fd) 

•  Each entry of this table 
points to an entry in the 
open file table 

•  Always starts at 0 

•  The first three entries in the file descriptor 
table are special by convention: 

cat	

•  Entry 0 is for input 
•  Entry 1 is for output 
•  Entry 2 is for error 

messages 

• What about reading/writing to the screen? 

•  Before a command is 
executed, the input and 
output can be changed from 
the default (terminal) to a file 
 Shell modifies file descriptors 

in child process 
 The child program knows 

nothing about this 

ls	 ls	

•  Redirection of output: >	
 Example:$ ls > my_files	
 Can save output from one of your programs 

•  Redirection of input:  <	
 Example: $ wc < input.data 

•  Append output: >>	
 Example: $ date >> logfile 

•  Bourne Shell derivatives:  fd>	
 Example: $ ls 2> error_log	

•  Save output from a program 
 > java OlympicScore > score.out	
 Redirected stdout to score.out	
 stderr would still go to terminal 

•  To redirect stderr to file as well 
 > java OlympicScore >& score.out	

•  My research: analyze www access logs 
•  When an access log file gets too long or it’s 

been a week, copied to access_log.1 
 Other files “bumped up” or deleted 

•  How can I put all the access logs in one file? 
  Is there anything else you need to know about these 

files? 

[root@servo httpd]# ls -l access_log*	
-rw-r--r-- 1 root root  213415 Apr 21 15:23 access_log	
-rw-r--r-- 1 root root  679283 Apr 19 03:59 access_log.1	
-rw-r--r-- 1 root root 1127828 Apr 12 04:01 access_log.2	
-rw-r--r-- 1 root root  977639 Apr  5 03:43 access_log.3	
-rw-r--r-- 1 root root  713767 Mar 29 04:01 access_log.4	



4/22/09 

5 

 a 

•  One solution:  
 cat access_log* > all_access.log	

•  Better solution to preserve order: 
 cat access_log.4 access_log.3 … access_log 
> inorder_access.log	

[root@servo httpd]# ls -l access_log*	
-rw-r--r-- 1 root root  213415 Apr 21 15:23 access_log	
-rw-r--r-- 1 root root  679283 Apr 19 03:59 access_log.1	
-rw-r--r-- 1 root root 1127828 Apr 12 04:01 access_log.2	
-rw-r--r-- 1 root root  977639 Apr  5 03:43 access_log.3	
-rw-r--r-- 1 root root  713767 Mar 29 04:01 access_log.4	

Want an easier way … 

•  Directories are lists of files and directories 
•  Each directory entry links to a file on the disk 

•  Hard links: Two different directory entries can link to 
the same file 
 Essentially gives same file another name 
  In same directory or across different directories 
 Cannot make a hard link to a directory 

Hello 
World!	

mydir	
hello	
file2	
subdir	

•  Directories are lists of files and directories 
•  Each directory entry links to a file on the disk 

•  Two different directory entries can link to the same file 
  In same directory or across different directories 

•  Moving a file does not actually move any data around 
  Creates link in new location 
  Deletes link in old location 

•  ln command: ln <target> <dest>	

Hello 
World!	

mydir	
hello	
file2	
subdir	 cpy	

•  Directories are lists of files and directories 
•  Each directory entry links to a file on the disk 

•  Two different directory entries can link to the same file 
  In same directory or across different directories 

•  Moving a file does not actually move any data around 
  Creates link in new location 
  Deletes link in old location 

•  ln command: ln <target> <dest>	

Hello 
World!	

mydir	
hello	
file2	
subdir	 cpy	cpy	

•  Symbolic links are different than regular links (often 
called hard links) 
  Created with ln -s	

•  Can be thought of as a directory entry that points to 
the name of another file 

dir_ent 
Contents of file 

dir_ent 

dir_ent Contents of file symlink 

Hard link Symbolic Link 



4/22/09 

6 

•  Symbolic links are different than regular links (often 
called hard links) 
  Created with ln -s	

•  Can be thought of as a directory entry that points to 
the name of another file 

•  Does not change link count for file 
 When original deleted, symbolic link remains 

•  They exist because 
 Hard links don’t work across file systems 
 Hard links only work for regular files, not directories 

dirent Contents of file symlink 

Symbolic Link 

usr	 etc	home	

/	

courses	students	 www	 tmp	faculty	

Your home 
directories 

cs111	

cs209	

assign1	

handouts	 turnin	

Your web 
pages 

“root” directory 

public_html	
Symbolic link 

•  Create a symbolic link to your turnin 
directory in your home directory 

•  How can do we find a set of files? 
•  One possibility: 

 ls –lR /	
• What about 

 All files below a given directory in the hierarchy? 
 All files since Jan 1, 2009? 
 All files larger than 10K? 

• find <pathlist> <expression>	
• find recursively descends through pathlist 

and applies expression to every file 
•  expression can be: 

 -name pattern   
•  true if file name matches pattern. Pattern may 

include shell patterns such as *, must be in quotes 
to suppress shell interpretation 

• find / -name '*.c’	
• find ~ -name '*.py’	

 …	
What do these commands do? 

•  -perm [+-]mode 
 Find files with given access mode, mode must be in 

octal.  Eg: find . 755	
•  -type ch 

 Find files of type ch (c=character, b=block, f for plain 
file, d = directory, etc.) Ex: find /home –type f 

•  -user userid/username 
 Find by owner userid or username 

•  -group groupid/groupname 
 Find by group groupid or groupname 

•  -size size 
 File size is at least size 

•  many more… 



4/22/09 

7 

Logical Operation Functionality 
! expression returns the logical negation of 

expression 
op1 -a op2 matches both patterns op1 and 

op2 
op1 -o op2 matches either op1 or op2 
( )  group expressions together  

• -print  prints out the name of the current file 
(default) 

• -exec cmd 
 Executes cmd, where cmd must be terminated 

by an escaped semicolon (\; or ';’) 
 If you specify {} as a command line argument, it 

is replaced by the name of the current file just 
found 

 exec executes cmd once per file 
 Example: 

• find . -name ”*~" -exec rm "{}" ";"	
What does this command do? 

•  Find all files beneath home directory beginning with f 
 find ~ -name 'f*' -print	

•  Find all files beneath home directory modified within 
last 24 hours 
 find ~ -mtime 0 -print	

•  Find all files beneath home directory larger than 10K 
 find ~ -size 10k -print	

•  Count words in files under home directory 
 find ~ -exec wc -w {} \; -print	

•  Remove core files 
 find / -name core –exec rm {} \;	

-print happens 
by default 

•  Problem opening Firefox “another session is 
already running” 

•  Solution: need to remove the “lock” files in 
your ~/.mozilla directory 

•  But where are those files? 
•  And how do you delete them? 

•  Problem opening Firefox “another session is 
already running” 

•  Solution: need to remove the “lock” files in 
your ~/.mozilla directory 

•  But where are those files? 
 Try: find ~/.mozilla –name “*lock*” 

•  And how do you delete them? 
 find ~/.mozilla –name “*lock” –exec 
rm {} \;	

• diff: compares two files and outputs a description 
of their differences 
 Usage: diff [options] file1 file2	
  -i : ignore case 
 -u : human readable 
 -bB : ignore white space 

apples 
oranges 
walnuts	

apples 
oranges 
grapes	

$ diff test1 test2  
3c3 
< walnuts 
--- 
> grapes	



4/22/09 

8 

• cmp	
 Tests two files for equality 
  If equal, nothing returned.  If different, location of 

first differing byte returned 
 Faster than diff for checking equality 

• comm	
 Reads two files and outputs three columns: 

•  Lines in first file only 
•  Lines in second file only 
•  Lines in both files 

 Must be sorted 
 Options: fields to suppress ( [-123] ) 

•  Process: An entity of execution 
•  UNIX can execute many processes 

simultaneously 
•  Creation of a process 

 A unique process id (pid) is assigned to the new 
process  

 Inherit Create and initialize other data structures 
(file tables, I/O table, etc.) 

•  By default, executing a command in the shell 
will wait for it to exit before printing out the 
next prompt 

•  Trailing a command with & allows the shell 
and command to run simultaneously 

[sprenkle@hopper ~]$ /bin/sleep 10 &	
[1] 7001	

pid 

• When a process ends, there is a return code 
associated with the process 

•  This is a integer 
 0 means success 
 >0 represent various kinds of failure, up to 

process 

•  Working directory 
•  File descriptor table 
•  Process id 

  number used to identify process 

•  Process group id 
  number used to identify set of processes 

•  Parent process id 
  process id of the process that created the process 

•  Umask 
 Default file permissions for new file 



4/22/09 

9 

We haven’t talked about these yet: 
•  Effective user and group id 

 The user and group this process is running with 
permissions as 

•  Real user and group id 
 The user and group that invoked the process 

•  Environment variables 

•  Report a snapshot of the current processes 
•  By default, just displays processes in the current 

terminal 
 Columns by default: PID, TTY, TIME, and CMD 

•   Accepted options: 
 UNIX options, which may be grouped and must be 

preceded by a dash 
 BSD options, which may be grouped and must not 

be used with a dash 
 GNU long options, which are preceded by two 

dashes 

Command Meaning 
ps -e See every process on the system 
ps -ef See every process on the system, 

in full listing 
ps ax See every process on the system 

Utility Functionality 
top	 Monitors tasks 
kill <pid>	 Terminate a process 

Use -9 if bugger won’t die 
nohup <cmd>	 Makes a command immune to 

hangup and terminal signal 
sleep <#>	 Sleep in seconds 
nice <cmd>	 Run processes at a low priority 

•  Ctrl-h : Erase or backspace character 
•  Ctrl-c : Interrupt or break character; stops 

printing and returns to UNIX 
•  Ctrl-z : Suspend current job 
•  Ctrl-s : Freezes screen 
•  Ctrl-q : Unfreezes screen 
•  Ctrl-u : Erase everything before this 
•  Ctrl-w : Erase previous word 
•  Ctrl-k : Erase remainder of line 

Control +  Function 
c Interrupt or break job 
z Suspend current job 

  bg to run in background 
h Erase or backspace character 
s Freezes screen 
q Unfreezes screen 
u Erase everything on line before this 
w Erase previous word 
k Erase remainder of line 



4/22/09 

10 

•  A set of key-value pairs associated with a 
process 

•  Keys and values are strings 
•  Passed to children processes 
•  Cannot be passed back up 

 Meaning, what you do in the child doesn’t affect 
parent 

•  Common examples: 
 PATH: Where to search for programs 
 TERM: Terminal type 

•  Colon-separated list of directories 
•  Non-absolute pathnames of executables are 

only executed if found in the list 
 Searched left to right 

•  Example: 
$ example.sh  
-bash: example.sh not found 
$ PATH=$PATH:. 
$ example.sh  
hello! 

•  What not to do: 

$ ls  
foo 
$ foo  
sh: foo: not found	

$ PATH=.:/bin  
$ ls  
foo 
$ cd /tmp/  
$ ls  
Congratulations, your files have been removed 
and you have just sent email to Prof. Korn 
challenging him to a fight.	

$ ./foo  
Hello, foo.	

•  Shells have several mechanisms for creating 
variables. A variable is a name representing a 
string value.  Example: PATH	
 Shell variables can save time and reduce typing 

errors 
•  Allow you to store and manipulate information 

 Ex: ls $DIR > $FILE	
•  Two types: local and environmental 

 Local are set by the user or by the shell itself 
 Environmental come from the operating system and 

are passed to children 

•  Syntax varies by shell 
 varname=value        # sh, ksh, bash	
 set varname = value  # csh	

•  To access the value:  $varname	

•  Turn local variable into environment: 
 All child processes from this terminal 
 export varname 	 	# sh, ksh, bash	
 setenv varname value 	# csh	



4/22/09 

11 

Name Meaning 
$HOME	 Absolute pathname of your home directory 
$PATH	 A list of directories to search for 
$MAIL	 Absolute  pathname to mailbox 
$USER	 Your user name 
$SHELL	 Absolute pathname of login shell 
$TERM	 Type of terminal 
$PS1	 Prompt 

To view all shell variables, set 	

•  You can set environment variables in your 
~/.bash_profile file 

•  Open ~/.bash_profile using jedit or emacs 
•  Create a new variable: 

  CS297=/home/courses/cs297	
•  Export the variable 

  export CS297	
•  In terminal, run the source command to load your new 

profile 
  source ~/.bash_profile	

•  Check that your new variable was created: 
  echo $CS297	

•  Use the variable 
  cd $CS297	

•  Due Friday 

•  Play with commands learned more 


