
4/27/09

1

•  Customizing your environment
 Aliases

•  Filtering commands
•  Combining Commands

 Semicolon
 Pipes

•  How do we find out how much space some files/
directories are taking up?

•  What command do we use to find a set of files
that meet various criteria?

•  How do we see the processes that are currently
running?

•  How can we see all our environment’s
variables?

•  What are two different ways to set environment
variables?
 How long will the variables be set in each case?

•  Ctl-S seems to freeze the terminal for one
keystroke

•  File format
 Used to archive or distribute files

•  Useful when we’re downloading/installing new
tools

 Similar to Zip
•  Utility:

 Collects many files into one larger tar file OR
 Extracts many files from one larger tar file

•  Syntax: tar <options> <arguments>	
•  Typical use:

 Extracting file:
• tar xf archive.tar	
• tar xfz archive.tar.gz	

 Creating file:
• tar cf archive.tar myDir	
• tar cfz archive.tar.gz files*	

Option Meaning
c Create archive file
x Extract archive file
f File
z Compress (gzip)
v Verbose

Archive file to create Files to put
into archive

4/27/09

2

•  A set of key-value pairs associated with a
process

•  Keys and values are strings
•  Passed to children processes
•  Cannot be passed back up

 Meaning, what you do in the child doesn’t affect
parent

•  Common examples:
 PATH: Where to search for programs
 TERM: Terminal type

•  Colon-separated list of directories
•  Non-absolute pathnames of executables are

only executed if found in the list
 Searched left to right

•  Example:
$ example.sh  
-bash: example.sh not found 
$ PATH=$PATH:. 
$ example.sh  
hello!

•  In my .bash_profile:
 PATH=$PATH:$HOME/bin	

• What does the above line mean?
• What is the result?

•  Shells have several mechanisms for creating
variables. A variable is a name representing a
string value. Example: PATH	
 Shell variables can save time and reduce typing

errors
•  Allow you to store and manipulate information

 Ex: ls $DIR > $FILE	
•  Two types: local and environmental

 Local are set by the user or by the shell itself
 Environmental come from the operating system and

are passed to children

•  Syntax varies by shell
 varname=value # sh, ksh, bash	
 set varname = value # csh	

•  To access the value: $varname	

•  Turn local variable into environment:
 All child processes from this terminal
 export varname 	 	# sh, ksh, bash	
 setenv varname value 	# csh	

Name Meaning
$HOME	 Absolute pathname of your home directory
$PATH	 A list of directories to search for
$MAIL	 Absolute pathname to mailbox
$USER	 Your user name
$SHELL	 Absolute pathname of login shell
$TERM	 Type of terminal
$PS1	 Prompt

To view all shell variables, set 	

4/27/09

3

•  You can set environment variables in your
~/.bash_profile file

•  Open ~/.bash_profile using jedit or emacs
•  Create a new variable:

  CS297=/home/courses/cs297	
•  Export the variable

  export CS297	
•  In terminal, run the source command to load your new

profile
  source ~/.bash_profile	

•  Check that your new variable was created:
  echo $CS297	

•  Use the variable
  cd $CS297	

File Name Purpose
.bash_profile	 Read and executed by Bash every

time you log into the system
.bashrc	 Read and executed by Bash every

time you start a subshell
.bash_logout	 Read and executed every time a login

shell exits

Open your .bash* files in jedit
Notice what each file contains

•  Open your .bashrc file
•  Comment out your PS1 definition, if it exists

 “Comment out” #	
•  Default prompt is \u@\h>	

Code Meaning
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format} the format is passed to strftime(3) and the result is inserted into

the prompt string; an empty format results in a locale-specific time
representation. The braces are required

\h the hostname up to the first .
\H the full hostname
\t the current time in 24-hour HH:MM:SS format
\T the current time in 12-hour HH:MM:SS format
\u the username of the current user
\w the current working directory, with $HOME abbreviated with a tilde
\W the basename of the current working directory, with $HOME

abbreviated with a tilde
\! the history number of this command
\# the command number of this command

Color Code
Black 0;30
Dark Gray 1;30
Blue 0;34
Light Blue 1;34
Green 0;32
Light Green 1;32
Cyan 0;36
Light Cyan 1;36
Red 0;31
Light Red 1;31
Purple 0;35
Light Purple 1;35

•  Use any of these escape
codes between \e[and
m to colorize text

Color Code
Brown 0;33
Yellow 1;33
Light Gray 0;37
White 1;37

Trends in codes?

• What does this prompt look like?
 export PS1="\e[1;31m\h:\W \u\$ \e[00m”	

4/27/09

4

•  Lets make the prompt red:

•  Break it down:
 \e[is the Escape Character sequence
 1;31m Sets the color to light (01) red (31)
 \h:\W \u\$ Prints hostname:(current

directory) username$
 \e[Escape Character sequence
 00m Clears all color (no color after this point)

•  Mine looks like:
 hopper:~ sprenkle$	

export PS1=”\[\e[1;31m\]\h:\W \u\$ \[\e[00m\]”	

Escape the color codes
so that it doesn’t mess up

the line-wrapping •  In .bashrc
•  export PS1=”\[\e[1;31m\]\h:\W \u\$ \
[\e[00m\]”	

•  source your .bash_profile

•  Make terminal small and use tab completion

•  Allow you to rename commands or type
something simple instead of a list of options

•  Can be defined on the command line,
in .bash_profile, or in .bashrc	

•  To see all defined aliases
 alias	

•  To see the definition for an alias
 alias name	

•  To create an alias
 alias name=command	

•  Open ~/.bashrc and .bash_profile	
•  Move your definition of CS297 and its export

from .bash_profile to .bashrc	
•  Add an alias called cd297 (or something

easy to remember) that cds to the CS297
directory

• unalias name	

•  Just for the current shell/session

4/27/09

5

Ways in which processes communicate:
•  Passing arguments, environment
•  Read/write regular files
•  Exit values
•  Signals
•  Pipes One of the cornerstones of UNIX

•  General idea: The input of one program is
the output of the other, and vice versa

•  Both programs run at the same time

A B

•  Often, only one end of the pipe is used

•  Could this be done with files/redirection?

A B

standard out
standard in

•  Unnecessary use of the disk
 Slower
 Can take up a lot of space

•  Doesn’t take advantage of multi-tasking

Process 1 Process 2

Run first program,
save output into file

Run second program,
using file as input

•  What if a process tries to read data but nothing
is available?
 UNIX puts the reader to sleep until data available

•  What if a process can’t keep up reading from
the process that’s writing?
 UNIX keeps a buffer of unread data

•  This is referred to as the pipe size
  If the pipe fills up, UNIX puts the writer to sleep until

the reader frees up space (by doing a read)
•  Multiple readers and writers possible with pipes

4/27/09

6

•  Pipes are often chained together
 Called filters

standard out
standard in

C A B

•  Output of one program becomes input to
another
 Uses concept of UNIX pipes

•  Example: $ who | wc -l	
 counts the number of users logged in

•  Example: $ find . –mtime 0 | wc	
 Counts number of files created in last day

•  Pipelines can be long:
who | awk '{print $1}' | sort | uniq	

•  Both of these commands send input to
command from a file instead of the terminal:

$ cat file | command	

$ command < file	

vs.

cat	 command	

command	

$ cat file | command	

$ command < file	

•  A class of Unix tools called filters
 Utilities that read from standard input, transform

the input, and write to standard out
•  Using filters can be thought of as data

oriented programming
 Each step of the computation transforms data

stream

• sort	
 Input: lines from a file
 Output: lines from the file sorted

• grep	
 Input: lines from a file
 Output: lines that match the argument

• awk	
 Programmable filter

4/27/09

7

•  Read from standard input and write to
standard output and one or more files
 Captures intermediate results from a filter in the

pipeline

Unix Command Standard output

file-list

•  Syntax: tee [-ai] file-list	
 -a append to output file rather than overwrite,

default is to overwrite (replace) the output file
 -i ignore interrupts
 file-list one or more file names for

capturing output
•  Examples

ls | head –10 | tee first_10 | tail –5	
who | tee user_list | wc	

What is the end result of each command?

John 	99 
Anne 	75 
Andrew 	50 
Tim 	95 
Arun 	33 
Sowmya 	76 

Tab Separated

Colon-separated
root:x:0:0:root:/root:/bin/bash	
sgoryl:x:513:504:Steve Goryl:/home/faculty/sgoryl:/bin/bash	
pinkhamd:x:514:504:Pinkham Derek:/home/faculty/pinkhamd:/bin/bash	
sprenkle:x:205:500:Sara Sprenkle:/home/faculty/sprenkle:/bin/bash	

Lots of other delimiters, e.g., commas or pipes

Why do we use delimiters?

• cut prints selected parts of input lines
 Can select columns (assumes tab-separated input)
 Can select a range of character positions

•  Some options:
 -f listOfCols print only specified columns

(tab-separated) on output
 -c listOfPos print only chars in specified

positions
 -d c use character c as the column separator

•  Lists are specified as ranges (e.g. 1-5) or
comma-separated (e.g. 2,4,5).

cut -f 1 data	
cut -f 1-3 data	
cut –f 4,2 data	
cut -f 4- data	
cut -d'|' -f 1-3 data	
cut -c 1-4 data	

Unfortunately, there's no way to refer to "last column"
without counting the columns.

Note how output is
formatted

 Columns joined
by delimiter

• paste displays several text files "in
parallel" on output

•  If the inputs are files a, b, c
  the first line of output is composed

of the first lines of a, b, c
  the second line of output is composed

of the second lines of a, b, c
•  Lines from each file are separated by

a tab character
•  If files are different lengths, output has

all lines from longest file, with empty
strings for missing lines

1 
2	

3 
4	

5 
6	

1 3 5 
2 4 6	

a b c

4/27/09

8

cut -f 1 data > data1	
cut -f 2 data > data2	
cut -f 3 data > data3	
paste data1 data3 data2 > newdata	

What is each command doing?
What is the final result?

• sort copies input to output but ensures that
output is arranged in ascending order of lines.
 By default, sorting is based on ASCII comparisons of

the whole line
•  Other features of sort:

 Understands text data that occurs in columns.
(can also sort on a column other than the first)

 Can distinguish numbers and sort appropriately
 Can sort files "in place" as well as behaving like a

filter
 Capable of sorting very large files

•  sort [-dftnr] [-o filename] [filename(s)]	

•  Lots more options…

Option Meaning

-d	 Dictionary order, only letters, digits, and whitespace are
significant in determining sort order

-f 	 Ignore case (fold into lower case)
-t	 Specify delimiter
-n	 Numeric order, sort by arithmetic value instead of first digit
-r	 Sort in reverse order
-o	 Filename – write output to filename, filename can be the

same as one of the input files

•  Remove or report adjacent duplicate lines
• uniq [-cdu] [input-file] [output-
file]	
 -c Supersede the -u and -d options and

generate an output report with each line
preceded by an occurrence count

 -d Write only the duplicated lines
 -u Write only those lines which are not

duplicated
 The default output is the union (combination) of
-d and -u	

•  The word count utility, wc, counts the
number of lines, characters or words

•  Options:
 -l Count lines
 -w Count words
 -c Count characters

•  Default: count lines, words and chars

who | sort | uniq –d	
wc my_essay	
who | wc	
sort file | uniq | wc –l	
sort file | uniq –d | wc –l	
sort file | uniq –u | wc -l

Why do we have to do sort before uniq?
Can’t we just use uniq?
(How do you think uniq is implemented?)

4/27/09

9

•  Unix limits the size of arguments and
environment that can be passed down to child

•  What happens when we have a list of 10,000
files to send to a command?

• xargs solves this problem
 Reads arguments as standard input
 Sends them to commands that take file lists
 May invoke program several times depending on

size of arguments

a1 … a300

cmd a1 a2 …
xargs
 cmd

cmd a100 a101
…

cmd a200 a201
…

•  find . -type f -print | xargs wc -l	
  -type f for files
  -print to print them out
  xargs invokes wc 1 or more times

•  wc -l a b c d e f g 
wc -l h i j k l m n o 
…	

•  Compare to: find . -type f –exec wc -l {}
\;	

• What does this command do? •  Syntax: yes [STRING]	
•  Output a string repeatedly until killed

•  One solution:

 Seems to do forced rm, no interaction with user
required

 LESSON: Do find part first and verify want to
do remove

•  Alternative (not quite equivalent) solution:

find . -name ”*~" -exec rm "{}" ";"	

yes | rm *~	
Just in current directory

•  Best practice: Do an ls using the regular expression to see what
files you’re going to delete, e.g., ls */*~	

•  Try the rm command, when it prompts you, say yes a few times.
•  If it seems to be working, kill it and do the command with the yes

|	

[sprenkle@hopper personal]$ yes | rm */*~	
rm: remove regular file `craw-hobby/index.html~'? rm:
remove regular file `England2008/England2008.html~'? rm:
remove regular file `England2008/Page1.html~'? rm:
remove regular file `England2008/Page2.html~'? rm:
remove regular file `England2008/Page3.html~'? rm:
remove regular file `England2008/Page4.html~'? rm:
remove regular file `England2008/Page5.html~'? rm:
remove regular file `England2008/Page6.html~'? rm:
remove regular file `England2008/Page7.html~'?
[sprenkle@hopper personal]$ 	

Answers y to each
removal question

4/27/09

10

•  On-the-fly modification of a previous
command to create a new command

•  the Bash shell uses the caret (^) character to
perform substitutions:
[sprenkle@hopper day3]$ ls -l villains.txt 	
-rw-r--r-- 1 sprenkle cs297 0 2009-04-22 13:29 villains.txt	
[sprenkle@hopper day3]$ ^villains^heroes	
ls -l heroes.txt 	
-rw-r--r-- 1 sprenkle cs297 0 2009-04-22 13:29 heroes.txt	

New command

•  Can execute multiple commands on one line
•  Example:

[sprenkle@pascal cs297]$ mkdir assigns; cd assigns	
[sprenkle@pascal assigns]$ 	

•  talk service is disabled

•  Requirement: must be on a machine where
the mail daemon is activated
 Best bet: pascal
 Message is from your
name@pascal.cs.wlu.edu	

•  Examples:
  mail -s ”Subject” <e_addr>	

•  Type message, ending message with a . on a line
by itself or control-D

  cat message | mail -s "CSCI211: Grade” <e_addr>	

•  You can check your messages on pascal
using the mail command
 Not a pretty interface!

4/27/09

11

•  Due Monday

