4/27/09

Objectives

Customizing your environment
Aliases

Filtering commands

Combining Commands
Semicolon
Pipes

Apr 24, 2009 Sprenkle - CS297

Review

How do we find out how much space some files/

directories are taking up?

What command do we use to find a set of files
that meet various criteria?

How do we see the processes that are currently

running?
How can we see all our environment’s
variables?

What are two different ways to set environment
variables?
How long will the variables be set in each case?

Apr 24, 2009 Sprenkle - CS297

Follow-up

Ctl-S seems to freeze the terminal for one
keystroke

Apr 24, 2009 Sprenkle - CS297

Tar: Tape Archive

File format
Used to archive or distribute files

Useful when we're downloading/installing new
tools

Similar to Zip

Utility:
Collects many files into one larger tar file OR
Extracts many files from one larger tar file

Apr 24, 2009 Sprenkle - CS297

Tar: Tape Archive

Syntax: tar <options> <arguments>

Typical use:
Extracting file:
tar xf archive.tar
tar xfz archive.tar.gz
Creating file:
tar cf archive.tar myDir
tar cfz archive.tar.gz files*

File

< N = x o

Verbose

Archive file to create Files to put

into archive
Apr 24, 2009 Sprenkle - CS297

Create archive file
Extract archive file

Compress (gzip)

CONFIGURING YOUR
ENVIRONMENT

Apr 24, 2009 Sprenkle - CS297

Environment of a Process

A set of key-value pairs associated with a
process

Keys and values are strings
Passed to children processes

Cannot be passed back up

Meaning, what you do in the child doesn't affect
parent

Common examples:
PATH: Where to search for programs
TERM: Terminal type

Apr 24, 2009 Sprenkle - CS297

4/27/09

The PATH environment variable

Colon-separated list of directories
Non-absolute pathnames of executables are
only executed if found in the list

Searched left to right
Example:

$ example.sh

-bash: example.sh not found
$ PATH=$PATH:.

$ example.sh

hello!

Apr 24, 2009 Sprenkle - CS297

My PATH Variable

In my .bash_profile:
PATH=$PATH: $HOME/bin

What does the above line mean?
What is the result?

Apr 24, 2009 Sprenkle - CS297

Shell Variables

Shells have several mechanisms for creating
variables. A variable is a name representing a
string value. Example: PATH
Shell variables can save time and reduce typing
errors
Allow you to store and manipulate information
Ex: 1s $DIR > $FILE
Two types: local and environmental
Local are set by the user or by the shell itself

Environmental come from the operating system and
are passed to children

Apr 24, 2009 Sprenkle - CS297

Shell Variables

Syntax varies by shell
varname=value # sh, ksh, bash
set varname = value # csh

To access the value: $varname

Turn local variable into environment:
All child processes from this terminal
export varname # sh, ksh, bash
setenv varname value # csh

Apr 24, 2009 Sprenkle - CS297

Environmental Variables

$HOME Absolute pathname of your home directory
$PATH Alist of directories to search for

$MATL Absolute pathname to mailbox

$USER Your user name

$SHELL Absolute pathname of login shell

$TERM Type of terminal

$PS1 Prompt

|To view all shell variables, set

Apr 24, 2009 Sprenkle - CS297

Setting Environment Variables

You can set environment variables in your
~/ .bash_profile file
Open ~/ .bash_profile using jedit or emacs
Create a new variable:
(CS297=/home/courses/cs297
Export the variable
export CS297
In terminal, run the source command to load your new
profile
source ~/.bash_profile
Check that your new variable was created:
echo $CS297
Use the variable
cd $CS297

Apr 24, 2009 Sprenkle - CS297

4/27/09

Bash'’s Configuration Files

.bash_profile Read and executed by Bash every
time you log into the system

.bashrc Read and executed by Bash every
time you start a subshell

Read and executed every time a login
shell exits

.bash_logout

Open your .bash* files in jedit
Notice what each file contains

Apr 24, 2009 Sprenkle - CS297

Customizing Your Prompt

Open your .bashrc file

Comment out your PS1 definition, if it exists
“Comment out” > #

Default prompt is \u@\h>

Apr 24, 2009 Sprenkle - CS297

Customizing Your Prompt

\d the date in "Weekday Month Date" format (e.g., "Tue May 26")

\D{format} the format is passed to strftime(3) and the result is inserted into
the prompt string; an empty format results in a locale-specific time
representation. The braces are required

\h the hostname up to the first .

\H the full hostname

\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\u the username of the current user

\w the current working directory, with SHOME abbreviated with a tilde

\\ the basename of the current working directory, with SHOME
abbreviated with a tilde

\! the history number of this command

the command number of this command

Apr 24, 2009 Sprenkle - CS297

Bash Color Excape Codes

Use any of these escape

Black 0;30

codes between \e[and pay gray 130

m to colorize text Blue 0:34

Light Blue 1;34

Green 0;32

Brown 0:33 Light Green 1;32

Yellow 1,33 Cyan 036

Light Gray ~ 0;37 Light Cyan 1:36

White 1,37 Red 0;31

Light Red 1;31

Purple 0;35

Trends in codes? Light Purple 1:35
Apr 24, 2009 Sprenkle - CS297

Bash Color Excape Codes

What does this prompt look like?
export PS1="\e[1;31m\h:\W \u\$ \e[0Om”

Apr 24, 2009 Sprenkle - CS297

4/27/09

Bash Color Excape Codes Escape the color codes

so that it doesn’t mess up

the line-wrapping

Lets make the prompt red:
export PS1="\[\e[1;31m\]\h:\W \u\$ \[\e[0Om\]”

Break it down:
\e[isthe Escape Character sequence
1;31m Sets the color to light (01) red (31)

\h:\W \u\$ Prints hostname:(current
directory) username$

\e[Escape Character sequence

@@m Clears all color (no color after this point)
Mine looks like:

hopper:~ sprenkle$

Apr 24, 2009 Sprenkle - CS297

Practice
In .bashrc

export PS1="\[\e[1;31m\I\h:\W \u\$ \
[\e[@om\]”

source your .bash_profile

Make terminal small and use tab completion

Apr 24, 2009 Sprenkle - CS297

ALIAH

Allow you to rename commands or type
something simple instead of a list of options
Can be defined on the command line,
in .bash_profile, orin .bashrc
To see all defined aliases
alias
To see the definition for an alias
alias name
To create an alias
alias name=command

Apr 24, 2009 Sprenkle - CS297

Create a new AL i AB

Open ~/ .bashrc and .bash_profile
Move your definition of C5297 and its export
from .bash_profile to .bashrc

Add an alias called cd297 (or something
easy to remember) that cds to the CS297
directory

Apr 24, 2009 Sprenkle - CS297

Deleting an A l_ i AE

unalias name

Just for the current shell/session

Apr 24, 2009 Sprenkle - CS297

PROCESS COMMUNICATION

Apr 24, 2009 Sprenkle - CS297

Inter-process Communication

Ways in which processes communicate:
Passing arguments, environment
Read/write regular files
Exit values
Signals
Pipes

Apr 24, 2009 Sprenkle - CS297

4/27/09

One of the cornerstones of UNIX

PIPES

Apr 24, 2009 Sprenkle - CS297

Pipes

General idea: The input of one program is
the output of the other, and vice versa

—— e

Both programs run at the same time

Apr 24, 2009 Sprenkle - CS297

Pipes

Often, only one end of the pipe is used

Istandard out
standardout]

Could this be done with files/redirection?

Apr 24, 2009 Sprenkle - CS297

Redirection/File Approach

Run second program,
using file as input

Run first program,
save output into file

Unnecessary use of the disk
Slower
Can take up a lot of space
Doesn'’t take advantage of multi-tasking

Apr 24, 2009 Sprenkle - CS297

Coordinating Pipes

What if a process tries to read data but nothing
is available?

UNIX puts the reader to sleep until data available
What if a process can’t keep up reading from
the process that's writing?

UNIX keeps a buffer of unread data

This is referred to as the pipe size

If the pipe fills up, UNIX puts the writer to sleep until
the reader frees up space (by doing a read)

Multiple readers and writers possible with pipes

Apr 24, 2009 Sprenkle - CS297

Filters

Pipes are often chained together
Called filters

plandard out b | [
standard in

Apr 24, 2009 Sprenkle - CS297

4/27/09

Pipelines

Output of one program becomes input to
another

Uses concept of UNIX pipes
Example: $ who | wc -1

counts the number of users logged in
Example: $ find . -mtime @ | wc

Counts number of files created in last day
Pipelines can be long:

who | awk "{print $1}' | sort | uniq

Apr 24, 2009 Sprenkle - CS297

What's the difference?

Both of these commands send input to
command from a file instead of the terminal:

$ cat file | command
VS.

$ command < file

Apr 24, 2009 Sprenkle - CS297

Difference: An Extra Process

$ cat file | command

8 — | cat command

$ command < file

8 =——p | command

Apr 24, 2009 Sprenkle - CS297

Introduction to Filters

A class of Unix tools called filters

Utilities that read from standard input, transform
the input, and write to standard out

Using filters can be thought of as data
oriented programming

Each step of the computation transforms data
stream

Apr 24, 2009 Sprenkle - CS297

Examples of Filters

sort

Input: lines from a file

Output: lines from the file sorted
grep

Input: lines from a file

Output: lines that match the argument
awk

Programmable filter

Apr 24, 2009 Sprenkle - CS297

4/27/09

tee

Unix Command T» Standard output

file-list

Read from standard input and write to
standard output and one or more files

Captures intermediate results from a filter in the
pipeline

Apr 24, 2009 Sprenkle - CS297

tee

Syntax: tee [-ai] file-list
-a append to output file rather than overwrite,
default is to overwrite (replace) the output file
-1 ignore interrupts
file-list one or more file names for
capturing output
Examples
1s | head -10 | tee first_10 | tail -5
who | tee user_list | wc

What is the end result of each command?
Apr 24, 2009 Sprenkle - CS297

Unix Text Files: Delimited Data

Tab Separated
John Lots of other delimiters, e.g., commas or pipes
Anne
Andrew
Tim
Arun
Sowmya

Why do we use delimiters?

Colon-separated

root:x:0:0:root:/root:/bin/bash

sgoryl:x:513:504:Steve Goryl:/home/faculty/sgoryl:/bin/bash
pinkhamd:x:514:504:Pinkham Derek:/home/faculty/pinkhamd:/bin/bash
sprenkle:x:205:500:Sara Sprenkle:/home/faculty/sprenkle:/bin/bash

Apr 24, 2009 Sprenkle - CS297

cut: select columns

cut prints selected parts of input lines

Can select columns (assumes tab-separated input)

Can select a range of character positions
Some options:

-f 1istOfCols print only specified columns

(tab-separated) on output

-c 1istOfPos print only chars in specified

positions

-d c use character c as the column separator
Lists are specified as ranges (e.g. 1-5) or
comma-separated (e.g. 2,4,5).

Apr 24, 2009 Sprenkle - CS297

cut examples

cut -f 1 data

cut -f 1-3 data

cut -f 4,2 data

cut -f 4- data

cut -d'|' -f 1-3 data
cut -c 1-4 data

Note how output is
formatted

- Columns joined
by delimiter

Unfortunately, there's no way to refer to "last column”
without counting the columns.

Apr 24, 2009 Sprenkle - CS297

paste: join columns

paste displays several text files "in
parallel" on output
If the inputs are files a, b, ¢

the first line of output is composed

of the first lines of a, b, ¢ @
}

the second line of output is composed
of the second lines of a, b, ¢

Lines from each file are separated by
a tab character
If files are different lengths, output has

all lines from longest file, with empty
strings for missing lines

Apr 24, 2009 Sprenkle - CS297

4/27/09

paste example

cut -f 1 data > datal
cut -f 2 data > data2
cut -f 3 data > data3
paste datal data3 data2 > newdata

What is each command doing?
What is the final result?

Apr 24, 2009 Sprenkle - CS297

sort: Sort lines of a file

sort copies input to output but ensures that

output is arranged in ascending order of lines.
By default, sorting is based on ASCII comparisons of
the whole line

Other features of sort:

Understands text data that occurs in columns.
(can also sort on a column other than the first)

Can distinguish numbers and sort appropriately

Can sort files "in place" as well as behaving like a
filter

Capable of sorting very large files

Apr 24, 2009 Sprenkle - CS297

sort: Options
sort [-dftnr] [-o filename] [filename(s)]

-d Dictionary order, only letters, digits, and whitespace are
significant in determining sort order

=7 Ignore case (fold into lower case)

-t Specify delimiter

=Ml Numeric order, sort by arithmetic value instead of first digit

-r Sort in reverse order

-0 Filename — write output to filename, filename can be the

same as one of the input files

Lots more options...

Apr 24, 2009 Sprenkle - CS297

uniq: list UNIQue items

Remove or report adjacent duplicate lines
uniq [-cdu] [input-file] [output-
file]

-C Supersede the -u and -d options and
generate an output report with each line
preceded by an occurrence count

-d Write only the duplicated lines

-u Write only those lines which are not
duplicated

The default output is the union (combination) of
-dand -u

Apr 24, 2009 Sprenkle - CS297

wc: Counting results

The word count utility, we, counts the
number of lines, characters or words

Options:
-1 Count lines
-W Count words
-C Count characters

Default: count lines, words and chars

Apr 24, 2009 Sprenkle - CS297

wc and uniq Examples

who | sort | uniq —d

WC my_essay

who | wc

sort file | uniq | wc -1
sort file | uniq -d | wc -1

sort file | uniq -u | wc -1
Why do we have to do sort before uniq?
Can’t we just use uniq?

(How do you think uniq is implemented?)

Apr 24, 2009 Sprenkle - CS297

4/27/09

xargs

Unix limits the size of arguments and
environment that can be passed down to child
What happens when we have a list of 10,000
files to send to a command?
xargs solves this problem

Reads arguments as standard input

Sends them to commands that take file lists

May invoke program several times depending on
size of arguments

cmdafta2...
at ... a300 —{Xargs cmd a100 a101
cmd
cmd a200 a201
Apr 24, 2009 Sprenkle - CS297

find utility and xargs

find . -type f -print | xargs wc -1
-type f for files
-print to print them out
xargs invokes we 1 or more times

wc-labcdefg
wc-lLhijklmno

Compare to: find . -type f —exec wc -1 {}

\;

Apr 24, 2009 Sprenkle - CS297

yes

What does this command do?

Apr 24, 2009 Sprenkle - CS297

yes

Syntax: yes [STRING]
Output a string repeatedly until killed

Apr 24, 2009 Sprenkle - CS297

Danger: Deleting a Set of Files
One solution:

find . -name ”*~" -exec rm "{}" ";"

Seems to do forced rm, no interaction with user
required

LESSON: Do find part first and verify want to
do remove

Alternative (not quite equivalent) solution:

yes | rm *~

Just in current directory
Apr 24, 2009 Sprenkle - CS297

Answers y to each
removal question

Example Execution

[sprenkle@hopper personall]$ yes | rm */*~

rm: remove regular file “craw-hobby/index.html~'? rm:
remove regular file ‘England2008/England2@@8.html~'? rm:
remove regular file ‘England20@8/Pagel.html~'? rm:
remove regular file ‘England20@8/Page2.html~'? rm:
remove regular file ‘England20@8/Page3.html~'? rm:
remove regular file 'England2008/Page4.html~'? rm:
remove regular file ‘England20@8/Page5.html~'? rm:
remove regular file ‘England20@8/Page6.html~'? rm:
remove regular file ‘England20@8/Page?.html~'?
[sprenkle@hopper personall]$

Best practice: Do an 1s using the regular expression to see what
files you're going to delete, e.g., Ls */*~

Try the rm command, when it prompts you, say yes a few times.

If it seems to be working, kill it and do the command with the yes

Apr 24, 2009 Sprenkle - CS297

4/27/09

Another Useful Shortcut

On-the-fly modification of a previous
command to create a new command

the Bash shell uses the caret (*) character to
perform substitutions:

[sprenkle@hopper day3]$ ls -1 villains.txt

-rw-r--r-- 1 sprenkle cs297 0 2009-04-22 13:29 villains.txt
[sprenkle@hopper day3]$ ~villains/heroes

1s -1 heroes.txt
-rw-r--r-- 1 sprenkle cs297 0 2009-04-22 13:29 heroes.txt

New command

Apr 24, 2009 Sprenkle - CS297

Execute Multiple Commands: ;

Can execute multiple commands on one line
Example:

[sprenkle@pascal cs297]$ mkdir assigns; cd assigns
[sprenkle@pascal assigns]$

Apr 24, 2009 Sprenkle - CS297

BY POPULAR DEMAND

Apr 24, 2009 Sprenkle - CS297

Using the talk command

talk service is disabled

Apr 24, 2009 Sprenkle - CS297

Using the mail command

Requirement: must be on a machine where
the mail daemon is activated
Best bet: pascal
Message is from your
name@pascal.cs.wlu.edu
Examples:
mail -s ”Subject” <e_addr>

Type message, ending message with a . on a line

by itself or control-D
cat message | mail -s "CSCI211: Grade” <e_addr>

Apr 24, 2009 Sprenkle - CS297

Using the mail command

You can check your messages on pascal
using the mail command
Not a pretty interface!

Apr 24, 2009 Sprenkle - CS297

10

Assignment 3
Due Monday

Apr 24, 2009

Sprenkle - CS297

4/27/09

11

