
4/27/09

1

•  Regular Expressions
•  Combining Commands

 backtics

•  How do you create an archive file?
 How do you extract an archive file?

•  How do you create a “shortcut” for a command?
 Where can you create the shortcuts?

•  What do we use to send the output from one
command to the input of the other command?

•  What command do we use to select different
columns from a file?

•  How can we merge several files in parallel?

•  Alias for cd is ChangeDir	

• When execute source, seems to get a
recursive definition

•  Simplify: alias cd=“cd; pwd”	

function ChangeDir {	
 if ["$1" = ""] ; then	
 cd	
 else	
 cd "$1"	
 fi	
 pwd	
}	

From /etc/bashrc	

•  Example of executing more than one
command on the command-line:

•  In my research:

sleep 5m; mplayer foo.mp3	

start_server	
sleep 2m; execute_testcases	

•  A regular expression (regex) describes a set
of possible input strings

•  Regular expressions descend from a
fundamental concept in Computer Science
called finite automata theory

•  Regular expressions are endemic to UNIX
 vi, ed, sed, and emacs
 awk, tcl, perl and Python
 grep, egrep, fgrep
 compilers

4/27/09

2

•  The simplest regular expressions are a string
of literal characters to match

•  The string matches the regular expression if
it contains the substring

CS297 rocks.	
match

CS297 sucks.	

match

CS297 is okay.	
no match

regular expression c k s	

•  A regular expression can match a string in
more than one place

Scrapple from the apple.	
match 1 match 2

regular expression a p p l e	

•  The . regular expression can be used to
match any character.

match 1 match 2

regular expression o . 	

I'm picking out a Thermos for you	

•  Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat	
match 1 match 2

regular expression b [eor] a t 	

match 3

•  Character classes can be negated with the
[^] syntax.

beat a brat on a boat	
match

regular expression b [^eo] a t 	

4/27/09

3

 [aeiou] will match any of the characters a, e, i,
o, or u	

 [kK]orn will match korn or Korn	
•  Ranges can be specified in character classes

 [1-9] is the same as [123456789]	
 [abcde] is equivalent to [a-e]	
 You can also combine multiple ranges
• [abcde123456789] is equivalent to
[a-e1-9]	

 Note that the - character has a special meaning
in a character class but only if it is used within a
range,
[-123] would match the characters -, 1, 2, or 3	

•  Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

•  Syntax [:name:]	
 [a-zA-Z] [[:alpha:]]	
 [a-zA-Z0-9] [[:alnum:]]	
 [45a-z] 	 [45[:lower:]]	

•  Important for portability across languages

•  Most of what we went through can be used in
commands, like rm (be careful!), mv, cp, …
 I test the rm command with ls first

•  Practice
 List the files that begin with D
 List that files that end in .java
 List the files that begin with D or d
 List the files that begin with A, B, C, or D and

end in .py

•  Anchors are used to match at the beginning
or end of a line (or both)

• ̂ means beginning of the line
• $ means end of the line

beat a brat on a boat	
match

regular expression ^ b [eor] a t 	

regular expression b [eor] a t $ 	

beat a brat on a boat	
match

^$	^word$	

•  The * is used to define zero or more
occurrences of the single regular expression
preceding it.

4/27/09

4

I got mail, yaaaaaaaaaay!	
match

regular expression y a * y 	

regular expression z o * z 	

.*	

match

This is the best pizza in a cup ever.	

Match 0 or more of any character

Scrapple from the apple.	
no

yes

regular expression a . * e 	

•  A match will be the longest string that
satisfies the regular expression.

no

•  Ranges can also be specified
 { } notation can specify a range of repetitions

for the immediately preceding regex
 {n} means exactly n occurrences
 {n,} means at least n occurrences
 {n,m} means at least n occurrences but no

more than m occurrences
•  Examples:

 .{0,} same as .*	
 a{2,} same as aaa*

•  If you want to group part of an expression so that *
or { } applies to more than just the previous
character, use () notation

•  Subexpresssions are treated like a single character
 a* matches 0 or more occurrences of a	
 abc* matches ab, abc, abcc, abccc, …
 (abc)* matches abc, abcabc, abcabcabc, …
 (abc){2,3} matches abcabc or abcabcabc	

• grep comes from the ed (Unix text editor) search
command “global regular expression print” or g/
re/p

•  This was such a useful command that it was written
as a standalone utility

•  Use grep when know you want the file that contains
a specific phrase but you can’t remember or don’t
know its name

• grep - uses regular expressions for pattern
matching

• fgrep - file grep, does not use regular
expressions, only matches fixed strings but can get
search strings from a file

• egrep - extended grep, uses a more powerful set
of regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

• agrep – approximate grep; not standard

4/27/09

5

•  Regular expression concepts we have seen
so far are common to grep and egrep

• grep and egrep have slightly different
syntax
 grep: BREs
 egrep: EREs (enhanced features we will

discuss)
•  Major syntax differences:

 grep: \(and \), \{ and \}
 egrep: (and), { and }

•  Many special characters used in regexs also
have special meaning to the shell

 Protects special characters from being operated
on by the shell

 If you habitually do it, you won’t have to worry
about when it is necessary

Single quote your regexs

•  To get literal characters, escape the
character with a \ (backslash)

•  Suppose we want to search for the character
sequence a*b*	
 a*b* will match zero or more ‘a’s followed by

zero or more ‘b’s (not what we want)
 Use a*b*	

•  Asterisks are now treated as regular characters

•  Regex also provides an alternation character | for
matching one or another subexpression
 (T|Fl)an will match ‘Tan’ or ‘Flan’
 ^(From|Subject): will match the From and Subject

lines of a typical email message
•  It matches a beginning of line followed by either the characters

‘From’ or ‘Subject’ followed by a ‘:’

•  Subexpressions are used to limit the scope of the
alternation
 At(ten|nine)tion then matches “Attention” or

“Atninetion”
 Atten|ninetion would match “Atten” or “ninetion”	

• * (star) specifies zero or more occurrences of
the immediately preceding character

• + (plus) means “one or more”
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but

will not match ‘abd’
 Equivalent to {1,}	

• ? (question mark) specifies an optional
character
 Single character that immediately precedes it
 July? will match ‘Jul’ or ‘July’
 Equivalent to {0,1} and (Jul|July)	

•  *, ?, and + are known as quantifiers
because they specify the quantity of a match

•  Quantifiers can also be used with
subexpressions
 (a*c)+

4/27/09

6

•  *, ?, and + are known as quantifiers
because they specify the quantity of a match

•  Quantifiers can also be used with
subexpressions
 (a*c)+ matches ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’

but will not match ‘a’ or a blank line

•  Variable names in C/Python
•  Dollar amount with optional cents
•  Time of day
•  HTML headers <h1> <H1> <h2> …

•  Variable names in C/Python
 [a-zA-Z_][a-zA-Z_0-9]*	

•  Dollar amount with optional cents
 \$[0-9]+(\.[0-9][0-9])?	

•  Time of day
 (1[012]|[1-9]):[0-5][0-9] (am|pm)	

•  HTML headers <h1> <H1> <h2> …
 <[hH][1-4]>	
 New standard is lower case h

•  Backreferences allow us to refer to a match
that was made earlier in a regex
 \n is the backreference specifier, where n is a

number
 Looks for nth subexpression

•  Example: HTML Tags
 <h[1-6]>.*</h[1-6]> is not good enough to

match html headers, since it matches
<h1>Hello world</h3>	

 <h\([1-6]\).*</h\1> matches what we
were trying to match before.

•  To find if the first word of a line is the same
as the last:
 ^\([[:alpha:]]\{1,\}\) .* \1$	
 \([[:alpha:]]\{1,\}\) matches 1 or more

letters
•  Another example:

 "Mr \(dog\|cat\) came home to Mrs \1
and they went to visit Mr \(dog\|cat
\) and Mrs \2 to discuss the meaning
of life” 	

What text should this match?

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]

Option Meaning

-h	 Do not display filenames
-i	 Ignore case
-l	 List only filenames containing matching lines
-n	 Precede matching line with its line number
-v	 Select non-matching lines
-x	 Match whole line only
-e expression	 Specify expression as option
-f filename	 Take regular expression (egrep) or a list of strings

(fgrep) from filename

4/27/09

7

•  grep 'men' GrepMe	
•  grep 'fo*' GrepMe	
•  egrep 'fo+' GrepMe	
•  egrep -n '[Tt]he' GrepMe	
•  fgrep 'The' GrepMe	
•  egrep 'NC+[0-9]*A?' GrepMe	
•  fgrep -f expfile GrepMe	

•  Find all lines with signed numbers
 	$ egrep ’[-+][0-9]+\.?[0-9]*’ *.c 

bsearch.c: return -1; 
compile.c: strchr("+1-2*3", t-> op)[1] - ’0’, dst, 
convert.c: Print integers in a given base 2-16 (default 10) 
convert.c: sscanf(argv[i+1], "% d", &base); 
strcmp.c: return -1; 
strcmp.c: return +1;

•  egrep has its limits: For example, it cannot match all lines
that contain a number divisible by 7.

•  /usr/share/dict/words contains over 400,000 words
  egrep hh /usr/share/dict/words 	

•  aarrghh
•  Ahhiyawa
•  archhead
•  archheart
…

•  egrep as a simple spelling checker: Specify plausible
alternatives you know
egrep "n(ie|ei)ther" /usr/share/dict/words	
Neither

•  How many words have 3 a’s one letter apart? 3 u’s?

•  How many words have 3 a’s one letter apart?
  egrep a.a.a /usr/dict/words | wc –l	

•  1632
•  How many words have 3 u’s one letter apart?

  egrep u.u.u /usr/dict/words | wc -l	
•  84

•  Look for patterns one line at a time, like grep
•  Change lines of the file
•  Non-interactive text editor

 Editing commands come in as script
 There is an interactive editor ed which accepts the same

commands
•  A Unix filter

 Superset of previously mentioned tools

scriptfile Input

Output

Input line
(Pattern Space)

•  Commands in a sed script are applied in
order to each line

•  If a command changes the input,
subsequent command will be applied to
the modified line in the pattern space, not
the original input line.

•  The input file is unchanged (sed is a filter).
•  Results are sent to standard output unless

redirected.

4/27/09

8

•  Regular expressions
•  Fast
•  Concise

•  Hard to remember text from one line to
another

•  Not possible to go backward in the file
•  No way to do forward references

like /..../+1	
•  No facilities to manipulate numbers
•  Cumbersome syntax

• sed – less important to us because know
Python
 Can use Python and its regular expression

module
 In general, check how to define regular

expressions/matches in the given API/library

•  Syntax: `command`	
 Backtick: on same key as ~

•  Means “execute this command first and use its
output in this command”

•  Example: I want to check the permissions on all
my shell scripts (which end in .sh)
 Verify that they’re executable by me and no one else
  ls -l `find . -name "*.sh"`	

•  Note that these commands will take a little
longer to execute because getting answer for
“inner” command first

• echo "You are in `pwd`”	
• expr `date +%S` % 10	

 What does this do?
 (Break into pieces and figure out how it works)

4/27/09

9

•  Recall the problem with my access log files:
wanted the access logs in time order
 Our solution: cat access_log{.4, .3, .
2, .1, } > expected	

 Another solution using backticks?

•  Recall the problem with my access log files:
wanted the access logs in time order
 Our solution: cat access_log{.4, .3, .
2, .1, } > expected	

 Another solution using backticks?
• cat `ls –r access_log*` > actual	

Get the files in reverse order

•  Assignment 4 due Wednesday

• Wednesday: Bash scripting

