
4/27/09

1

•  Regular Expressions
•  Combining Commands

 backtics

•  How do you create an archive file?
 How do you extract an archive file?

•  How do you create a “shortcut” for a command?
 Where can you create the shortcuts?

•  What do we use to send the output from one
command to the input of the other command?

•  What command do we use to select different
columns from a file?

•  How can we merge several files in parallel?

•  Alias for cd is ChangeDir	

• When execute source, seems to get a
recursive definition

•  Simplify: alias cd=“cd; pwd”	

function ChangeDir {	
 if ["$1" = ""] ; then	
 cd	
 else	
 cd "$1"	
 fi	
 pwd	
}	

From /etc/bashrc	

•  Example of executing more than one
command on the command-line:

•  In my research:

sleep 5m; mplayer foo.mp3	

start_server	
sleep 2m; execute_testcases	

•  A regular expression (regex) describes a set
of possible input strings

•  Regular expressions descend from a
fundamental concept in Computer Science
called finite automata theory

•  Regular expressions are endemic to UNIX
 vi, ed, sed, and emacs
 awk, tcl, perl and Python
 grep, egrep, fgrep
 compilers

4/27/09

2

•  The simplest regular expressions are a string
of literal characters to match

•  The string matches the regular expression if
it contains the substring

CS297 rocks.	
match

CS297 sucks.	

match

CS297 is okay.	
no match

regular expression c k s	

•  A regular expression can match a string in
more than one place

Scrapple from the apple.	
match 1 match 2

regular expression a p p l e	

•  The . regular expression can be used to
match any character.

match 1 match 2

regular expression o . 	

I'm picking out a Thermos for you	

•  Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat	
match 1 match 2

regular expression b [eor] a t 	

match 3

•  Character classes can be negated with the
[^] syntax.

beat a brat on a boat	
match

regular expression b [^eo] a t 	

4/27/09

3

 [aeiou] will match any of the characters a, e, i,
o, or u	

 [kK]orn will match korn or Korn	
•  Ranges can be specified in character classes

 [1-9] is the same as [123456789]	
 [abcde] is equivalent to [a-e]	
 You can also combine multiple ranges
• [abcde123456789] is equivalent to
[a-e1-9]	

 Note that the - character has a special meaning
in a character class but only if it is used within a
range,
[-123] would match the characters -, 1, 2, or 3	

•  Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

•  Syntax [:name:]	
 [a-zA-Z]  [[:alpha:]]	
 [a-zA-Z0-9]  [[:alnum:]]	
 [45a-z] 	  [45[:lower:]]	

•  Important for portability across languages

•  Most of what we went through can be used in
commands, like rm (be careful!), mv, cp, …
 I test the rm command with ls first

•  Practice
 List the files that begin with D
 List that files that end in .java
 List the files that begin with D or d
 List the files that begin with A, B, C, or D and

end in .py

•  Anchors are used to match at the beginning
or end of a line (or both)

• ̂ means beginning of the line
• $ means end of the line

beat a brat on a boat	
match

regular expression ^ b [eor] a t 	

regular expression b [eor] a t $ 	

beat a brat on a boat	
match

^$	^word$	

•  The * is used to define zero or more
occurrences of the single regular expression
preceding it.

4/27/09

4

I got mail, yaaaaaaaaaay!	
match

regular expression y a * y 	

regular expression z o * z 	

.*	

match

This is the best pizza in a cup ever.	

Match 0 or more of any character

Scrapple from the apple.	
no

yes

regular expression a . * e 	

•  A match will be the longest string that
satisfies the regular expression.

no

•  Ranges can also be specified
 { } notation can specify a range of repetitions

for the immediately preceding regex
 {n} means exactly n occurrences
 {n,} means at least n occurrences
 {n,m} means at least n occurrences but no

more than m occurrences
•  Examples:

 .{0,} same as .*	
 a{2,} same as aaa*

•  If you want to group part of an expression so that *
or { } applies to more than just the previous
character, use () notation

•  Subexpresssions are treated like a single character
 a* matches 0 or more occurrences of a	
 abc* matches ab, abc, abcc, abccc, …
 (abc)* matches abc, abcabc, abcabcabc, …
 (abc){2,3} matches abcabc or abcabcabc	

• grep comes from the ed (Unix text editor) search
command “global regular expression print” or g/
re/p

•  This was such a useful command that it was written
as a standalone utility

•  Use grep when know you want the file that contains
a specific phrase but you can’t remember or don’t
know its name

• grep - uses regular expressions for pattern
matching

• fgrep - file grep, does not use regular
expressions, only matches fixed strings but can get
search strings from a file

• egrep - extended grep, uses a more powerful set
of regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

• agrep – approximate grep; not standard

4/27/09

5

•  Regular expression concepts we have seen
so far are common to grep and egrep

• grep and egrep have slightly different
syntax
 grep: BREs
 egrep: EREs (enhanced features we will

discuss)
•  Major syntax differences:

 grep: \(and \), \{ and \}
 egrep: (and), { and }

•  Many special characters used in regexs also
have special meaning to the shell

 Protects special characters from being operated
on by the shell

 If you habitually do it, you won’t have to worry
about when it is necessary

Single quote your regexs

•  To get literal characters, escape the
character with a \ (backslash)

•  Suppose we want to search for the character
sequence a*b*	
 a*b* will match zero or more ‘a’s followed by

zero or more ‘b’s (not what we want)
 Use a*b*	

•  Asterisks are now treated as regular characters

•  Regex also provides an alternation character | for
matching one or another subexpression
 (T|Fl)an will match ‘Tan’ or ‘Flan’
 ^(From|Subject): will match the From and Subject

lines of a typical email message
•  It matches a beginning of line followed by either the characters

‘From’ or ‘Subject’ followed by a ‘:’

•  Subexpressions are used to limit the scope of the
alternation
 At(ten|nine)tion then matches “Attention” or

“Atninetion”
 Atten|ninetion would match “Atten” or “ninetion”	

• * (star) specifies zero or more occurrences of
the immediately preceding character

• + (plus) means “one or more”
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but

will not match ‘abd’
 Equivalent to {1,}	

• ? (question mark) specifies an optional
character
 Single character that immediately precedes it
 July? will match ‘Jul’ or ‘July’
 Equivalent to {0,1} and (Jul|July)	

•  *, ?, and + are known as quantifiers
because they specify the quantity of a match

•  Quantifiers can also be used with
subexpressions
 (a*c)+

4/27/09

6

•  *, ?, and + are known as quantifiers
because they specify the quantity of a match

•  Quantifiers can also be used with
subexpressions
 (a*c)+ matches ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’

but will not match ‘a’ or a blank line

•  Variable names in C/Python
•  Dollar amount with optional cents
•  Time of day
•  HTML headers <h1> <H1> <h2> …

•  Variable names in C/Python
 [a-zA-Z_][a-zA-Z_0-9]*	

•  Dollar amount with optional cents
 \$[0-9]+(\.[0-9][0-9])?	

•  Time of day
 (1[012]|[1-9]):[0-5][0-9] (am|pm)	

•  HTML headers <h1> <H1> <h2> …
 <[hH][1-4]>	
 New standard is lower case h

•  Backreferences allow us to refer to a match
that was made earlier in a regex
 \n is the backreference specifier, where n is a

number
 Looks for nth subexpression

•  Example: HTML Tags
 <h[1-6]>.*</h[1-6]> is not good enough to

match html headers, since it matches
<h1>Hello world</h3>	

 <h\([1-6]\).*</h\1> matches what we
were trying to match before.

•  To find if the first word of a line is the same
as the last:
 ^\([[:alpha:]]\{1,\}\) .* \1$	
 \([[:alpha:]]\{1,\}\) matches 1 or more

letters
•  Another example:

 "Mr \(dog\|cat\) came home to Mrs \1
and they went to visit Mr \(dog\|cat
\) and Mrs \2 to discuss the meaning
of life” 	

What text should this match?

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]

Option Meaning

-h	 Do not display filenames
-i	 Ignore case
-l	 List only filenames containing matching lines
-n	 Precede matching line with its line number
-v	 Select non-matching lines
-x	 Match whole line only
-e expression	 Specify expression as option
-f filename	 Take regular expression (egrep) or a list of strings

(fgrep) from filename

4/27/09

7

•  grep 'men' GrepMe	
•  grep 'fo*' GrepMe	
•  egrep 'fo+' GrepMe	
•  egrep -n '[Tt]he' GrepMe	
•  fgrep 'The' GrepMe	
•  egrep 'NC+[0-9]*A?' GrepMe	
•  fgrep -f expfile GrepMe	

•  Find all lines with signed numbers
 	$ egrep ’[-+][0-9]+\.?[0-9]*’ *.c 

bsearch.c: return -1; 
compile.c: strchr("+1-2*3", t-> op)[1] - ’0’, dst, 
convert.c: Print integers in a given base 2-16 (default 10) 
convert.c: sscanf(argv[i+1], "% d", &base); 
strcmp.c: return -1; 
strcmp.c: return +1;

•  egrep has its limits: For example, it cannot match all lines
that contain a number divisible by 7.

•  /usr/share/dict/words contains over 400,000 words
  egrep hh /usr/share/dict/words 	

•  aarrghh
•  Ahhiyawa
•  archhead
•  archheart
…

•  egrep as a simple spelling checker: Specify plausible
alternatives you know
egrep "n(ie|ei)ther" /usr/share/dict/words	
Neither

•  How many words have 3 a’s one letter apart? 3 u’s?

•  How many words have 3 a’s one letter apart?
  egrep a.a.a /usr/dict/words | wc –l	

•  1632
•  How many words have 3 u’s one letter apart?

  egrep u.u.u /usr/dict/words | wc -l	
•  84

•  Look for patterns one line at a time, like grep
•  Change lines of the file
•  Non-interactive text editor

 Editing commands come in as script
 There is an interactive editor ed which accepts the same

commands
•  A Unix filter

 Superset of previously mentioned tools

scriptfile Input

Output

Input line
(Pattern Space)

•  Commands in a sed script are applied in
order to each line

•  If a command changes the input,
subsequent command will be applied to
the modified line in the pattern space, not
the original input line.

•  The input file is unchanged (sed is a filter).
•  Results are sent to standard output unless

redirected.

4/27/09

8

•  Regular expressions
•  Fast
•  Concise

•  Hard to remember text from one line to
another

•  Not possible to go backward in the file
•  No way to do forward references

like /..../+1	
•  No facilities to manipulate numbers
•  Cumbersome syntax

• sed – less important to us because know
Python
 Can use Python and its regular expression

module
 In general, check how to define regular

expressions/matches in the given API/library

•  Syntax: `command`	
 Backtick: on same key as ~

•  Means “execute this command first and use its
output in this command”

•  Example: I want to check the permissions on all
my shell scripts (which end in .sh)
 Verify that they’re executable by me and no one else
  ls -l `find . -name "*.sh"`	

•  Note that these commands will take a little
longer to execute because getting answer for
“inner” command first

• echo "You are in `pwd`”	
• expr `date +%S` % 10	

 What does this do?
 (Break into pieces and figure out how it works)

4/27/09

9

•  Recall the problem with my access log files:
wanted the access logs in time order
 Our solution: cat access_log{.4, .3, .
2, .1, } > expected	

 Another solution using backticks?

•  Recall the problem with my access log files:
wanted the access logs in time order
 Our solution: cat access_log{.4, .3, .
2, .1, } > expected	

 Another solution using backticks?
• cat `ls –r access_log*` > actual	

Get the files in reverse order

•  Assignment 4 due Wednesday

• Wednesday: Bash scripting

