Objectives

Regular Expressions
Combining Commands
backtics

Apr 27, 2009 Sprenkle - CS297

4/27/09

Review

How do you create an archive file?
How do you extract an archive file?
How do you create a “shortcut” for a command?
Where can you create the shortcuts?
What do we use to send the output from one
command to the input of the other command?
What command do we use to select different
columns from a file?
How can we merge several files in parallel?

Apr 27, 2009 Sprenkle - CS297

Problems with source and cd

Alias for cd is ChangeDir

function ChangeDir {
if ["$1" =""1]
cd
else
cd "$1"
fi
pwd

From /etc/bashrc

}
When execute source, seems to get a
recursive definition
Simplify: alias cd=“cd; pwd”

Apr 27, 2009 Sprenkle - CS297

; then

Follow Up

Example of executing more than one
command on the command-line:

sleep 5m; mplayer foo.mp3

In my research:

start_server
sleep 2m; execute_testcases

Apr 27, 2009 Sprenkle - CS297

REGULAR EXPRESSIONS

Apr 27, 2009 Sprenkle - CS297

What Is a Regular Expression?

A regular expression (regex) describes a set
of possible input strings
Regular expressions descend from a
fundamental concept in Computer Science
called finite automata theory
Regular expressions are endemic to UNIX
vi, ed, sed, and emacs
awk, tcl, perl and Python
grep, egrep, fgrep

compilers

Apr 27, 2009 Sprenkle - CS297

Regular Expressions

The simplest regular expressions are a string
of literal characters to match

The string matches the regular expression if
it contains the substring

Apr 27, 2009 Sprenkle - CS297

4/27/09

regular eXpreSSion E

CS297 rocks.

(S297 is okay.

no match

Apr 27, 2009 Sprenkle - CS297

Regular Expressions

A regular expression can match a string in
more than one place

regular expressionr—— umnn

Scrapple from the i

match 1 match 2

Apr 27, 2009 Sprenkle - CS297

Regular Expressions

The . regular expression can be used to
match any character.

regular expression = u..

I'm picking out a Therm

match 1 match 2

Apr 27, 2009 Sprenkle - CS297

Character Classes

Character classes [| can be used to match
any specific set of characters.

regular expressior—— EE

match 1 match 2 match 3

Apr 27, 2009 Sprenkle - CS297

Negated Character Classes

Character classes can be negated with the
[A] syntax.

regular expressiopr—— EE

beat a |

t on a boat

match

Apr 27, 2009 Sprenkle - CS297

More About Character Classes

[aeiou] will match any of the characters a, €, 1,
o,oru

[kKJorn will match korn or Korn
Ranges can be specified in character classes

[1-9] is the same as [123456789]

[abcde] is equivalent to [a-€e]

You can also combine multiple ranges
[abcde123456789] is equivalent to
[a-e1-9]

Note that the - character has a special meaning

in a character class but only if it is used within a

range,

[-1237 would match the characters -, 1, 2, or 3

Apr 27, 2009 Sprenkle - CS297

4/27/09

Named Character Classes

Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)
Syntax [:name:]
[a-zA-7] > [[:alpha:]]
[a-zA-Z0-9] > [[:alnum:]]
[45a-Z] > [45[:1lower:]1]
Important for portability across languages

Apr 27, 2009 Sprenkle - CS297

Regular Expressions

Most of what we went through can be used in
commands, like rm (be carefull), mv, cp, ...

| test the rm command with 1s first
Practice

List the files that begin with D

List that files that end in .java

List the files that begin with D or d

List the files that begin with A, B, C, or D and
end in .py

Apr 27, 2009 Sprenkle - CS297

Anchors

Anchors are used to match at the beginning
or end of a line (or both)

A means beginning of the line

$ means end of the line

Apr 27, 2009 Sprenkle - CS297

regular expression —>|‘/\ ‘ b‘ [eO r':l ‘ a ‘ t u

regular expression —>”b ‘ [eor‘] ‘ a‘ t ‘ $ u

beat a brat on a

match

Aword$ A$

Apr 27, 2009 Sprenkle - CS297

Repetition

The * is used to define zero or more
occurrences of the single regular expression
preceding it.

Apr 27, 2009 Sprenkle - CS297

regular expression:

This is the best pizza in a cup ever.

match

JE Match 0 or more of any character

4/27/09

Apr 27, 2009 Sprenkle - CS297

Match length

A match will be the longest string that
satisfies the regular expression.

regular expression—s u.ﬂa

i from the apple.
I f

no yes

Apr 27, 2009 Sprenkle - CS297

Repetition Ranges

Ranges can also be specified

{ } notation can specify a range of repetitions
for the immediately preceding regex

{n} means exactly n occurrences
{n,} means at least n occurrences
{n, m} means at least n occurrences but no
more than m occurrences
Examples:
.{0,} sameas .*
a{2,} same as aaa*

Apr 27, 2009 Sprenkle - CS297

Subexpressions

If you want to group part of an expression so that *
or { } applies to more than just the previous
character, use () notation
Subexpresssions are treated like a single character
a* matches 0 or more occurrences of a
abc* matches ab, abc, abcc, abccg, ...
Cabc)* matches abc, abcabce, abcabceabc, ...
(Cabc){2, 3} matches abcabc or abcabcabc

Apr 27, 2009 Sprenkle - CS297

grep

grep comes from the ed (Unix text editor) search
command “global regular expression print” or g/
re/p

This was such a useful command that it was written
as a standalone utility

Use grep when know you want the file that contains

a specific phrase but you can’t remember or don’t
know its name

Apr 27, 2009 Sprenkle - CS297

Family Differences

grep - uses regular expressions for pattern
matching

fgrep - file grep, does not use regular
expressions, only matches fixed strings but can get
search strings from a file

egrep - extended grep, uses a more powerful set
of regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

agrep — approximate grep; not standard

Apr 27, 2009 Sprenkle - CS297

4/27/09

Syntax

Regular expression concepts we have seen
so far are common to grep and egrep
grep and egrep have slightly different
syntax
grep: BREs
egrep: EREs (enhanced features we will
discuss)
Major syntax differences:
grep:\(and\), {and\}
egrep: (and), {and}

Apr 27, 2009 Sprenkle - CS297

Protecting Regex Metacharacters

Many special characters used in regexs also
have special meaning to the shell

Single quote your regexs

Protects special characters from being operated
on by the shell

If you habitually do it, you won’t have to worry
about when it is necessary

Apr 27, 2009 Sprenkle - CS297

Escaping Special Characters

To get literal characters, escape the
character with a \ (backslash)

Suppose we want to search for the character
sequence a*b*

a*b* will match zero or more ‘a’s followed by
zero or more ‘b’s (not what we want)

Use a*b*
Asterisks are now treated as regular characters

Apr 27, 2009 Sprenkle - CS297

Egrep: Alternation

Regex also provides an alternation character | for
matching one or another subexpression
(TIFL)an will match ‘Tan’ or ‘Flan’
A(CFroml|Subject): will match the From and Subject
lines of a typical email message

It matches a beginning of line followed by either the characters
‘From’ or ‘Subject’ followed by a *’

Subexpressions are used to limit the scope of the
alternation
At(tenlnine)tion then matches “Attention” or
“Atninetion”
Atten|ninetion would match “Atten” or “ninetion”

Apr 27, 2009 Sprenkle - CS297

Egrep: Repetition Shorthands

* (star) specifies zero or more occurrences of
the immediately preceding character
+ (plus) means “one or more”

abc+d will match ‘abed’, ‘abeed’, or ‘abeccceed’ but
will not match ‘abd’

Equivalentto {1, }
? (question mark) specifies an optional
character
Single character that immediately precedes it
July? will match ‘Jul’ or ‘July’
Equivalentto {0,1} and (JullJuly)

Apr 27, 2009 Sprenkle - CS297

Egrep: Repetition Shorthands
*, ?, and + are known as quantifiers
because they specify the quantity of a match

Quantifiers can also be used with
subexpressions

(a*c)+

Apr 27, 2009 Sprenkle - CS297

Egrep: Repetition Shorthands

*, ?, and + are known as quantifiers
because they specify the quantity of a match

Quantifiers can also be used with
subexpressions

(a*c)+ matches ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’
but will not match ‘a’ or a blank line

Apr 27, 2009 Sprenkle - CS297

4/27/09

Practical Regex Examples

Variable names in C/Python

Dollar amount with optional cents
Time of day

HTML headers <h1> <H1> <h2> ...

Apr 27, 2009 Sprenkle - CS297

Practical Regex Examples

Variable names in C/Python
[a-zA-Z_][a-zA-Z_0-97*

Dollar amount with optional cents
\$[0-9]1+(\.[0-9][0-91)?

Time of day
(1[012]1[1-9]1):[@0-5][0-9] Camlpm)

HTML headers <h1> <H1> <h2> ...
<[hH][1-4]>
New standard is lower case h

Apr 27, 2009 Sprenkle - CS297

Grep: Backreferences

Backreferences allow us to refer to a match
that was made earlier in a regex

\n is the backreference specifier, where n is a
number

Looks for nth subexpression

Example: HTML Tags
<h[1-6]>.*</h[1-6]> is not good enough to
match html headers, since it matches
<h1>Hello world</h3>

<h\([1-6]\).*</h\1> matches what we
were trying to match before.

Apr 27, 2009 Sprenkle - CS297

Grep: Backreference Examples

To find if the first word of a line is the same

as the last:
A\([L:alpha:TIN{1,\}\) .* \1%
\C[[:alpha:JI\{1,\}\) matches 1 or more
letters

Another example:
"Mr \(dog\lcat\) came home to Mrs \1
and they went to visit Mr \(dog\lcat
\) and Mrs \2 to discuss the meaning

of life”
What text should this match?

Apr 27, 2009 Sprenkle - CS297

grep Family Syntax

grep [-hilnv] [-e expression] [filename]

egrep [-hilnv] [-e expression] [-f filename] [expression]
[filename]

fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]

-h Do not display filenames

-1 Ignore case

-1 List only filenames containing matching lines
-n Precede matching line with its line number
-V Select non-matching lines

-X Match whole line only

-e expression Specify expression as option

-f filename Take regular expression (egrep) or a list of strings
(fgrep) from filename

grep Examples

grep 'men' GrepMe

grep 'fo*' GrepMe

egrep 'fo+' GrepMe

egrep -n '[Tt]he' GrepMe
fgrep 'The’ GrepMe

egrep "NC+[0-9]*A?"' GrepMe
fgrep -f expfile GrepMe

« Find all lines with signed numbers
$ egrep ’[-+][0-9]+\.7[0-9]*’ *.c
bsearch.c: return -1;
compile.c: strchr("+1-2*3", t-> op)[1] - ’@’, dst,
convert.c: Print integers in a given base 2-16 (default 10)
convert.c: sscanf(argv[i+1], "% d", &base);
strcmp.c: return -1;
strcmp.c: return +1;

« egrep has its limits: For example, it cannot match all lines
that contain a number divisible by 7.

Apr 27, 2009 Sprenkle - CS297

4/27/09

Fun with the Dictionary

/usr/share/dict/words contains over 400,000 words
egrep hh /usr/share/dict/words
aarrghh
Ahhiyawa
archhead
archheart

egrep as a simple spelling checker: Specify plausible
alternatives you know

egrep "n(ielei)ther" /usr/share/dict/words

Neither

How many words have 3 a’s one letter apart? 3 u's?

Apr 27, 2009 Sprenkle - CS297

Fun with the Dictionary

How many words have 3 a’s one letter apart?
egrep a.a.a /usr/dict/words | wc -1
1632
How many words have 3 u’s one letter apart?
egrep u.u.u /usr/dict/words | wc -1
84

Apr 27, 2009 Sprenkle - CS297

SED

Apr 27, 2009 Sprenkle - CS297

Sed: Stream-oriented, Non-
Interactive, Text Editor
Look for patterns one line at a time, like grep
Change lines of the file

Non-interactive text editor
Editing commands come in as script

There is an interactive editor ed which accepts the same
commands

A Unix filter
Superset of previously mentioned tools

Apr 27, 2009 Sprenkle - CS297

sed Architecture

scriptfile

Input line
Pattern Space

« Commands in a sed script are applied in
order to each line

« If a command changes the input,
subsequent command will be applied to
the modified line in the pattern space, not
the original input line.

« The input file is unchanged (sed is a filter).

« Results are sent to standard output unless

redirected.
Apr 27, 2009 Sprenkle - CS297

Sed Advantages

Regular expressions
Fast
Concise

Apr 27, 2009 Sprenkle - CS297

4/27/09

Sed Drawbacks

Hard to remember text from one line to
another

Not possible to go backward in the file

No way to do forward references
like /..../+1

No facilities to manipulate numbers
Cumbersome syntax

Apr 27, 2009 Sprenkle - CS297

sed

sed - less important to us because know
Python

Can use Python and its regular expression
module

In general, check how to define regular
expressions/matches in the given APl/library

Apr 27, 2009 Sprenkle - CS297

USING COMMANDS IN
COMMANDS

Apr 27, 2009 Sprenkle - CS297

Using commands in commands:

Syntax: ~command”

Backtick: on same key as ~
Means “execute this command first and use its
output in this command”
Example: | want to check the permissions on all
my shell scripts (which end in .sh)

Verify that they're executable by me and no one else

1s -1 “find . -name "*.sh"®

Note that these commands will take a little
longer to execute because getting answer for
“inner” command first

Apr 27, 2009 Sprenkle - CS297

Try These Examples

echo "You are in “pwd™”
expr “date +%S° % 10
What does this do?
(Break into pieces and figure out how it works)

Apr 27, 2009 Sprenkle - CS297

Problem

Recall the problem with my access log files:

wanted the access logs in time order

Our solution: cat access_log{.4, .3,
2, .1, } > expected

Another solution using backticks?

Apr 27, 2009 Sprenkle - CS297

4/27/09

Problem

Recall the problem with my access log files:
wanted the access logs in time order

Our solution: cat access_log{.4, .3,
2, .1, } > expected

Another solution using backticks?
cat '1s -r access_log*" > actual

1

Get the files in reverse order

Apr 27, 2009 Sprenkle - CS297

Looking Ahead
Assignment 4 due Wednesday

Wednesday: Bash scripting

Apr 27, 2009 Sprenkle - CS297

