
4/29/09

1

•  Bash scripting • What are special characters for regular
expressions and what do they mean?

• Which command should you use for fast,
enhanced searching with regular
expressions?

• What is backreferencing?
• Which command should you use if you want

backreferencing?
• What is the syntax for those commands?

•  Script: a shell program
•  Tool for building applications by "gluing

together" system calls, tools, utilities, and
compiled binaries

•  Just about everything we’ve done so far is
available for use in a script
 Adds even more

•  Good for repetitive tasks that don’t require a
more structured programming language

Advantages
Easy to work with/use other
programs
Easy to work with
directories, files
Easy to work with strings
(easier than C, at least)
Good for prototyping

Advantages Disadvantages
Easy to work with/use other
programs

Slower

Easy to work with
directories, files

Not well-suited for algorithms
and data structures

Easy to work with strings
(easier than C, at least)
Good for prototyping

In some ways, we’ll love it;
in some ways, we’ll hate it.

Scripts won’t be long

•  C-like syntax (uses { }'s)
•  Inadequate for scripting

 Poor control over file descriptors
 Difficult quoting "I say \"hello\"" doesn't work
 Can only trap SIGINT
 Can't mix flow control and commands

•  But has some nice interactive features
  Job control
 Command history
 Command line editing, with arrow keys (tcsh)

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot 	

4/29/09

2

•  Slight differences on various systems
•  Evolved into standardized POSIX shell
•  Scripts will also run with ksh, bash (Bourne-

again shell)
•  Influenced by ALGOL

Just about everything we’ve learned so far can be used in scripts…

•  simple command: sequence of non blanks
arguments separated by blanks or tabs.

•  1st argument (numbered zero) usually specifies the
name of the command to be executed.

•  Any remaining arguments:
 Are passed as arguments to that command.
 Arguments may be filenames, pathnames, directories or

special options

ls –l /	
/bin/ls 
-l 
/	

•  Any command ending with "&" is run in the
background

• wait will block until the command finishes
  If give a parameter n, n may be a process ID or a

job specification
•  if a job spec, all processes in that job’s pipeline are

waited for
  If n is not given, all currently active child processes

are waited for and the return status is zero.

firefox &	

•  The shell's power is in its ability to hook
commands together

• We've seen one example of this so far with
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq	

What does this do?

•  Means of input:
 Program arguments

[control information]
 Environment variables

[state information]
 Standard input [data]

•  Means of output:
 Return status code [control information]
 Standard out [data]
 Standard error [error messages]

4/29/09

3

•  Redirection of output: >
 example:$ ls -l > my_files	

•  Redirection of input: <
 example: $ cat <input.data	

•  Append output: >>
 example: $ date >> logfile	

•  Arbitrary file descriptor redirection: fd>
 example: $ ls –l 2> error_log	

• cmd 2>file	
 send standard error to file
 standard output remains the same

• cmd > file 2>&1	
 send both standard error and standard output to

file
• cmd > file1 2>error_log	

 send standard output to file1
 send standard error to error_log

All behave the same way
•  Programs

 Most that are part of the OS in /bin	
•  Built-in commands
•  Functions
•  Aliases

•  A shell script is a regular text file that
contains shell or UNIX commands

•  Kernel uses the first line of script to
determine which shell script to use
 #!pathname-of-shell

•  Kernel invokes pathname and sends the script as
an argument to be interpreted

 If #! is not specified, the current shell assumes it
is a script in its own language
•  Can lead to problems

#!/bin/sh  

echo Hello World	 Command to execute

Which shell to use

Note: Look at the available shells by executing
	ls -l /bin/*sh	

What do you notice about the shells?

echo – like a print statement

4/29/09

4

•  A script can be invoked as:
 sh scr_name [arg …]	
 sh < scr_name [args …]	
 path/scr_name [arg …]	

•  Before running it, it must have execute
permission:
 chmod +x scr_name	

Where sh is whatever
shell you want

We’ll typically use either the 1st or 3rd execution option
and we’ll use the bash shell

• Write a script that
 Shows the time and date
 Lists all logged-in users
 Saves the output into a logfile

•  Build in pieces
•  Execute and test your script

 Verify the output in the logfile

•  Built-in commands are internal to the shell and
do not create a separate process

•  Commands are built-in because:
 They are intrinsic to the language (exit)
 They produce side effects on the current process

(cd)
 They perform faster

•  No fork/exec
•  Special built-ins

 : . break continue eval exec export
exit readonly return set shift trap
unset 	

exec	 Replaces shell with program
cd	 Change working directory
shift 	 Rearrange positional parameters
set	 Set positional parameters
wait	 Wait for background process to exit
umask	 Change default file permissions
exit	 Quit the shell
eval	 Parse and execute string

time	 Run command and print times
export 	 Put variable into environment
trap	 Set signal handlers
continue	Continue in loop
break	 Break in loop
return	 Return from function
:	 True
.	 Read file of commands into current

shell

•  Comments begin with an #	
•  Comments end at the end of the line
•  Comments can begin whenever a token begins
•  Our text editors should help you with syntax

highlighting

•  Examples:
# This is a comment	
# and so is this	
grep foo bar # this is a comment	
grep foo bar# this is not a comment	

Add a comment at 2nd line in your script that lists you as author

4/29/09

5

•  To set:
name=value	
 Variables are untyped

•  Read: $var	
•  Variables can be local or environment

 Environment variables are part of UNIX and can
be accessed by child processes

•  Turn local variable into environment var:
 export variable	

Notice no spaces around = #!/bin/sh  

MESSAGE="Hello World" 
echo $MESSAGE	
echo ‘$MESSAGE’	
echo “$MESSAGE”	

variable.sh

Prints variable
Prints literally
Prints variable

Name Meaning
$HOME	 Absolute pathname of your home directory
$PATH	 A list of directories to search for
$MAIL	 Absolute pathname to mailbox
$USER	 Your user name
$SHELL	 Absolute pathname of login shell
$TERM	 Type of terminal
$PS1	 Prompt

#!/bin/bash	

echo I am $USER	
echo “I live at $HOME”	

env_var.sh

Both statements would
work either with or

without quotes

•  A parameter is one of the following:
 A positional parameter, starting from 0
 A special parameter

•  To get the value of a parameter: ${param}	
 Can be part of a word (abc${foo}def)
 Works within double quotes

•  The {} can be omitted for simple variables, special
parameters, and single digit positional parameters

•  The arguments to a shell script
 $0, $1, $2, $3 …	
 Parameter 0 is the name of the shell or the shell

script	
•  The arguments to a shell function
•  Arguments to the set built-in command

 set this is a test	
• $1=this, $2=is, $3=a, $4=test	

•  Manipulated with shift	
 shift 2	

• $1=a, $2=test	

4/29/09

6

Script

Invocation:

#!/bin/sh  

Parameter 1: string 
Parameter 2: file  
grep $1 $2 | wc –l	

$ countlines ing /usr/share/dict/words
30415

countlines

Parameter Meaning
$#	 Number of positional parameters
$-	 Options currently in effect
$?	 Exit value of last executed command
$$	 Process number of current process
$!	 Process number of background process
$*	 All arguments on command line from 1

on
“$@”	 All arguments on command line

Individually quoted “$1” “$2” …; good if
parameters contain spaces

countlines_print

•  The shell processes the following characters specially
unless quoted:
  | & () < > ; " ' $ ` space tab newline	

•  The following are special whenever patterns are
processed:
  * ? []	

•  The following are special at the beginning of a word:
  # ~	

•  The following is special when processing
assignments:
  = 	

•  Shell provides alternative ways of supplying standard
input to commands (an anonymous file)

•  Shell allows in-line input redirection using << called
here documents

•  Syntax:

• arbitrary-delimiter should be a string that
does not appear in text

command [arg(s)] << arbitrary-delimiter	
	command input	
	 :	
	 :	
	arbitrary-delimiter	

#!/bin/sh 

mail –s “Groceries” sprenkles@wlu.edu << END	
Don’t forget your grocery list	
Eggs	
Milk	
Bread	
END	

groceries.sh

•  Used to turn the output of a command into a
string

•  Used to create arguments or variables

$ date 
Wed Apr 29 10:55:51 EDT 2009 
$ NOW=`date` 
$ echo $NOW	
Wed Apr 29 10:55:59 EDT 2009 
$ PATH=`myscript`:$PATH	

4/29/09

7

•  Multiple commands
 Separated by semicolon or newline

•  Command groupings
 pipelines

•  Subshell
(command1; command2) > file	

•  Boolean operators
•  Control structures

•  Exit value of a program is a number
 0 means success
 anything else is a failure code

• cmd1 && cmd2	
 executes cmd2 if cmd1 is successful

• cmd1 || cmd2	
 executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date  
$ ls bad_file > /dev/null || date 
Wed Apr 22 07:43:23 2009	

Send output to black hole
(Can’t be read)

if expression  
then  

	command1  
else  

	command2  
fi	

•  Any UNIX command. Evaluates to true if the
exit code is 0, false if the exit code > 0

•  Special command /bin/test does most
common expressions:
 String compare
 Numeric comparison
 Check file properties

• [] often a built-in version of /bin/test
for syntactic sugar

if test "$USER" = ”sprenkle" 
then  

	echo "I know you" 
else  

	echo "I don’t know you" 
fi	

if [-f /tmp/stuff] && [`wc –l /tmp/stuff | cut -f1 -d " "` -
gt 10]  
then  

	echo "The file has more than 10 lines in it" 
else  

	echo "The file is nonexistent or small" 
fi	

know.sh

filesize.sh

•  String based tests

•  Numeric tests

-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string	 string is not NULL

int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/

equal

4/29/09

8

•  File tests

•  Logic

-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file (exists)
-d file File is directory
-s file File exists and is not empty

!	 Negate result of expression
-a, -o	 And operator, or operator
(expr) 	 Groups an expression

•  Add appropriate code to countlines	

ARGS=1 # Number of arguments expected	
# Exit value if incorrect number of args passed.	
E_BADARGS=65	

test $# -lt $ARGS && echo "Usage: `basename $0` <arg1>" && \
exit $E_BADARGS	

•  Use external command /bin/expr	
• expr expression 	

 Evaluates expression and sends the result to
standard output

 Yields a numeric or string result

 Particularly useful with command substitution

expr 4 "*" 12	
expr "(" 4 + 3 ")" "*" 2	

X=`expr $X + 2`	

Need to quote the * b/c
shell interprets it

arith_operators.sh

•  Double parentheses

•  Let statement
let z=z+3	
let "z += 3" 	 Quotes permit the use of spaces

in variable assignment

let.sh

z=$(($z+3))	
z=$((z+3))	

• if … then … fi	
• while … done	
• until … do … done	
• for … do … done	
• case … in … esac	

•  Examples:

for var in list 
do  

	command 
done	

sum=0 
for var in "$@" 
do  

	 sum=`expr $sum + $var` 
done	
echo The sum is $sum	

for file in *.c 	
do	

	echo "We have $file" 
done	

for_file.sh
for_params.sh

sum_params.sh

4/29/09

9

• Write a script that copies all files in a
directory into a backup subdirectory
 Takes as a parameter the directory

•  Due Friday
• Write in small parts and test

 Remember you’re learning a new language!!
•  Comment each script

 Every script should contain your name and a
high-level description
•  Helpful to refer to later

•  Friday: advanced bash scripting

