
5/5/09

1

•  Bash scripting • What is a shell script?
 What is an advantage of shell scripting?

• What is the format of a shell script?
• What can we do in a shell script?
•  How do we create and use a variable?
•  How do we use command-line arguments?

•  Extended Bourne shell
 Improvements include some of the most useful

features of bash, ksh, and tcsh
•  1st version written by Paul Falstad in 1990

when he was a student at Princeton
•  Name derives from Yale professor Zhong

Shao, then a teaching assistant at Princeton
University
 Paul Falstad thought that Shao's login name,

"zsh", was a good name for a shell.
Source: http://en.wikipedia.org/wiki/Zsh	

•  There are many
choices for
shells

•  Shell features
evolved as
UNIX grew

•  Using special parameters $@ and “$@”

for_params.sh

•  Like a C/Java switch statement for strings:

• * is a catch all condition (default)

case $var in  
	opt1) 	command1 
	 	command2 
	 	;; 
	opt2) 	command 
	 	;; 
	*) 	command 
	 	;; 

esac

5/5/09

2

#!/bin/bash	

for INPUT in "$@"	
do  
 case $INPUT in	
 hello)	
 echo "Hello there."	
 ;;	
 bye)	
 echo "See ya later."	
 ;;	
 *)	
 echo "I'm sorry?"	
 ;;	
 esac	
done	
echo "Take care.” 	

What does this
script do?

How can I exercise
all cases, output

possibilities?

case.sh

•  opt can be a shell pattern or a list of shell
patterns delimited by |	

•  Example:
case $name in  
 [0-9]) 
 echo "That doesn't seem like a name." 
 ;; 
 S*|T*) 
 echo "Your name starts with S or T, cool." 
 ;; 
 *) 
 echo "You're not special." 
 ;; 
esac	

case2.sh

•  Functions are similar to scripts and other
commands except:
 They can produce side effects in the callers

script.
 Variables are shared between caller and callee

•  Everything is global
 The positional parameters are saved and

restored when invoking a function. •  Local variables: positional parameters
 $0 is the function’s name

name () { 
	commands 

}	

function name { 
	commands 

}	

or

• What is the expected output?
function function_B {	
 echo Function B.	
}	

function function_A {	
 echo $0: $1	
 function_C "$1" 	
}	

function function_D {	
 echo Function D.	
}	

function function_C () {	
 echo "---------------"	
 echo Function C: $1	
 echo GLOBAL = $GLOBAL	
 let GLOBAL=$GLOBAL+1	
 echo "---------------"	
}	

GLOBAL=1	

# FUNCTION CALLS	
# Pass parameter to function A	
function_A "Function A."	
function_B	
function_C "Function C."	
function_D	

functions.sh
functions2.sh

•  Emit HTML for directory contents

$ dir2html.sh day4 > dir.html	

5/5/09

3

• When bash encounters some command
(without slashes), it needs to figure out what
to execute

•  In order, bash looks for
 Functions
 Built-ins
 PATH search

•  Example: getting user input

•  Reading from a file
 bash readFile.sh < filename	

echo -n "Enter a value: "	
read var	
echo "\"var\" = $var"	

read.sh

while read line	
do	
 echo "\"line\" = $line"	
done	

readFile.sh

•  Better syntax with $(command)	
 Allows nesting
 x=$(cat $(generate_file_list))	

•  Backward compatible with ` … ` notation

•  Variables can be arrays
 Indexed by number
 Examples:
• foo[3]=test	
• echo ${foo[3]}	

• ${#arr} is length of the array

•  I found some information about Bash arrays
which seems to be part of a newer version of
Bash than we have

arrays.sh

•  Not looking at files you’re working with
•  Not looking at the output at intermediate

steps
 Doing unnecessary commands

•  Not using the most appropriate command
•  Not reducing output enough

 Use appropriate options

5/5/09

4

•  For half of (non-late) points you missed, you can
redo the parts of the homework you missed
 May need to redo the parts that the missed part

depends on
•  Use my feedback on the assignments to guide

you
 No feedback on assignment 4

•  Due one week from today
•  These are worth 42% of your grade

 Will have a couple more assignments

•  Advanced Bash Scripting
 Script to print *all* files in a directory using lists

•  Nested lists for subdirectories
 Script to test your assignment 4

•  Looking ahead
 Starting software tools on Monday
 Check calendar for important dates/midterms in

other classes

