Objectives
Bash scripting

May 1, 2009 Sprenkle - CS297

Review

What is a shell script?
What is an advantage of shell scripting?

What is the format of a shell script?

What can we do in a shell script?

How do we create and use a variable?
How do we use command-line arguments?

May 1, 2009 Sprenkle - CS297

Follow Up: zsh

Extended Bourne shell
Improvements include some of the most useful
features of bash, ksh, and tcsh
1st version written by Paul Falstad in 1990
when he was a student at Princeton

Name derives from Yale professor Zhong
Shao, then a teaching assistant at Princeton
University
Paul Falstad thought that Shao's login name,
"zsh", was a good name for a shell.

May 1, 2009 Source: http://en.wikipedia.org/wiki/Zsh

UNIX Scripting Languages

|

1976

|
1978

There are many |

choices for ”f‘”
shells 1982
|
1984 t
Shell features mLs
evolved as |

1988

UNIX grew |

1990

|

1992

|

1994

For Review
Using special parameters $@ and “$@”

May 1, 2009 sprenkle-cs2e7 101_params.sh

Case statement

Like a C/Java switch statement for strings:

case $var in

optl) commandl
command2
optZ)’, command

)
*) command
1

esac

* is a catch all condition (default)

May 1, 2009 Sprenkle - CS297

5/5/09

Case Example

#!/bin/bash
for INPUT in "$@"
do
case $INPUT in What does this
hello) script do?
echo "Hello there."”
bye)’ ’ How can | exercise
echo "See ya later." all cases, output
) » possibilities?
echo "I'm sorry?"
esac
done

echo "Take care.”

May 1, 2009 Sprenkle - CS297 case.sh

Case Options

opt can be a shell pattern or a list of shell
patterns delimited by |

Example:

case $name in
[0-91)
echo "That doesn't seem like a name."
S*ITH
echo "Your name starts with S or T, cool."
. 1
echo "You're not special."

3
esac

May 1, 2009 Sprenkle - CS297 case2.sh

Functions

Functions are similar to scripts and other
commands except:
They can produce side effects in the callers
script.
Variables are shared between caller and callee
Everything is global
The positional parameters are saved and
restored when invoking a function.

May 1, 2009 Sprenkle - CS297

Function Syntax

function name {
commands

3
name () {

or commands

}

Local variables: positional parameters
$0 is the function’s name

May 1, 2009 Sprenkle - CS297

Function Example
What is the expected output?

function function_C O {
echo "----------oooo- "
echo Function C: $1
echo GLOBAL = $GLOBAL
let GLOBAL=$GLOBAL+1
echo "-----------o-- "

function function_B {
echo Function B.

function function_A {
echo $0: $1 1
function_C "$1"

GLOBAL=1

function function_D {

echo Function D. # FUNCTION CALLS

Pass parameter to function A
} function_A "Function A."
function_B
functions.sh function_C "Function C."
functions2.sh function_D
May 1, 2009 Sprenkle - CS297

Script Example
Emit HTML for directory contents

$ dirzhtml.sh day4 > dir.html

May 1, 2009 Sprenkle - CS297

5/5/09

Command Search Rules

When bash encounters some command
(without slashes), it needs to figure out what
to execute
In order, bash looks for

Functions

Built-ins

PATH search

May 1, 2009 Sprenkle - CS297

Getting Input: read

Example: getting user input

echo -n "Enter a value: "
read var read.sh
echo "\"var\" = $var"

Reading from a file
bash readFile.sh < filename

while read line

do . . readFile.sh
echo "\"line\" = $line"
done

May 1, 2009 Sprenkle - CS297

Command Substitution

Better syntax with $(command)
Allows nesting
x=$(cat $(generate_file_list))

Backward compatible with ™ ... * notation

May 1, 2009 Sprenkle - CS297

Array Variables

Variables can be arrays
Indexed by number
Examples:

foo[3]=test
echo ${foo[3]}

${#arr} is length of the array

| found some information about Bash arrays
which seems to be part of a newer version of
Bash than we have

arrays.sh
May 1, 2009 Sprenkle - CS297

Some of My Scripts

May 1, 2009 Sprenkle - CS297

Common Homework Issues

Not looking at files you’re working with
Not looking at the output at intermediate
steps

Doing unnecessary commands
Not using the most appropriate command
Not reducing output enough

Use appropriate options

May 1, 2009 Sprenkle - CS297

5/5/09

Homework Redo

For half of (non-late) points you missed, you can
redo the parts of the homework you missed

May need to redo the parts that the missed part
depends on

Use my feedback on the assignments to guide
you
No feedback on assignment 4
Due one week from today
These are worth 42% of your grade
Will have a couple more assignments

May 1, 2009 Sprenkle - CS297

Assignment 6 Due Wednesday

Advanced Bash Scripting
Script to print *all* files in a directory using lists
Nested lists for subdirectories
Script to test your assignment 4

Looking ahead
Starting software tools on Monday
Check calendar for important dates/midterms in
other classes

May 1, 2009 Sprenkle - CS297

5/5/09

