
5/6/09

1

•  Eclipse
•  Build tools

 Make
 Ant
 Maven

• What are tools meant to do?
 Why do we create them?

• Where can we apply tools to the software life
cycle?

•  Integrated Development Environment
 Developing
 Compiling
 Running
 Debugging
 Packaging

•  Entirely object-oriented
•  Similar to Python

Program.java	

Written in Java
Programming Language

Compiler
Program.class	

Bytecode: machine
code for a virtual CPU

javac	

Multiple Views

Editor

Configurable, customizable

•  Make a new Java project called First
•  Create a new class called Hello
•  Create a new jar file

 jar is a Java archive, similar to a tape archive
(tar)
•  Includes all the class files needed to run the

application/for the library
 Export

•  Java  Jar file

5/6/09

2

•  Import
 Existing projects into workspace
 Select archive file:

•  /home/courses/cs297/handouts/day7/jotto.jar
 Should give the name “Jotto” to the project

•  Run Jotto
 Click the play button on the project, on jotto, or

on jotto.Jotto
•  Like Lingo

 Start a new game

•  Allow you to customize your Eclipse
•  Provide new perspectives, views for Eclipse
•  Download and install the plugins you want

•  Pieces typically distributed:
 Binaries/Bytecode
 Required libraries
 Data files
 Documentation

•  Typically packaged in an archive:
 e.g., tgz, jar, zip, rpm

•  May need all of these or some subset of
them

artifacts

• make: A program for building and
maintaining computer programs
 Developed at Bell Labs around

1978 by Stu Feldman
•  Now Google VP Engineering
•  Past President of ACM

•  Instructions stored in a special
format file called a makefile

http://www.gnu.org/software/make/	

•  Contains the build instructions for a project
 Automatically updates files based on a series of

dependency rules
 Supports multiple configurations for a project

•  Only re-compiles necessary files after a change
(conditional compilation)
 Major time-saver for large projects
 Uses timestamps of the intermediate files

•  Typical usage: executable is updated from
object files which are in turn compiled from
source files

5/6/09

3

simulator.c	queue.c	 customer.c	

queue.o	 customer.o	 simulator.o	

simulator	

compile

link

generated original simulator.y	

# Example Makefile	
CC=g++	
CFLAGS=-g –Wall -DDEBUG	
OBJECTS=customer.o simulator.o queue.o	

simulator: $(OBJECTS)	
 $(CC) $(CFLAGS) –o simulator $(OBJECTS)	
simulator.o: simulator.c	
 $(CC) $(CFLAGS) –c simulator.c	

customer.o: customer.c	
 $(CC) $(CFLAGS) –c customer.c	
…	
clean:	
 rm $(OBJECTS) simulator	

$ make 	
$ make clean	
$ make –f other_makefile	

Running:

Rules/
Targets

Dependencies

Commands

Variables

By default looks for
makefile	

Must be a tab

•  Java-based build tool
•  Similar to make

http://ant.apache.org/	

Make Ant

Shell-based, makefile Java,
XML config files

•  Looks similar to HTML
 HTML’s stricter brother

•  Designed to structure, store, and transport
data
 Text file  PORTABLE!

•  Made up of nested elements
 Hierarchy of data

•  Schema
 Define your own tags, tag nesting, tag

attributes

<email>	
	<to>you@somewhere.org</to>	
	<from>me@here.org</from>	
	<subject>Reminder</subject>	
	<message>Don't forget me this

weekend!</message>	
</email>	

<email>	
	<to>you@somewhere.org</to>	
	<from>me@here.org</from>	
	<subject>Reminder</subject>	
	<message>Don't forget me this

weekend!</message>	
</email>	

Root element

child
elements

Close every element you open

5/6/09

4

<imdb>
 <movie category=“comedy”>
 <title lang=“en”>Juno</title>
 <title lang=“es”>La joven vida de Juno</title>
 </movie>
 <movie category=“comedy”>
 <title lang=“en”>Chicken Run</title>
 <title lang=“de”>Hennen Rennen</title>
 </movie>

</imdb>

attribute •  Starts with XML version:

•  Root element: project	
 name attribute: name of the project
 default attribute: default target	
 basedir attribute: directory to run from

<?xml version="1.0” encoding="UTF-8"?>	

<project name="Hello World”
default="Hello" basedir=".">	

In Eclipse

•  Target: has a name, set of tasks to execute
•  Can specify which targets to execute

 If no target given, use project’s default
•  Can depend on other targets
•  Examples:

 Compile
 Distribute

•  Needs compile

<target name=“compile"/>	
<target name=“jar"
depends=“compile"/>	

Closes open tag

<target name="compile"	
 description="Compile the source code">	
 <mkdir dir="build/classes"/>	
 <javac srcdir="src"	
 destdir="build/classes"	
 debug="on">	
 <include name="**/*.java"/>	
 <classpath refid="build.class.path"/>	
 </javac>	
</target>	

What does this do?

build-replay.xml	

•  Like a variable: defines a name and its value:
 <property name=“vname” value=“vvalue” />	

•  To use property, use ${name}	

•  In build.xml in Eclipse, add two
properties:
 HelloText=Hello
 WorldText=World

•  Add two new targets
•  First:

 Use ctl-space to auto-complete

•  Second: use Eclipse’s design view
•  Run file

<target name="Hello”>	
 <echo>${HelloText}</echo>	
</target>	

5/6/09

5

# Example Makefile	
CC=g++	
CFLAGS=-g –Wall -DDEBUG	
OBJECTS=customer.o simulator.o queue.o	

simulator: $(OBJECTS)	
 $(CC) $(CFLAGS) –o simulator $(OBJECTS)	
simulator.o: simulator.c	
 $(CC) $(CFLAGS) –c simulator.c	

customer.o: customer.c	
 $(CC) $(CFLAGS) –c customer.c	
…	
clean:	
 rm $(OBJECTS) simulator	

$ make 	
$ make clean	
$ make –f other_makefile	

Running:

Rules/
Targets

Dependencies

Commands

Variables

By default looks for
makefile	

•  Maven: Yiddish word meaning accumulator
of knowledge

•  For building and managing any Java-based
project

http://maven.apache.org/	

•  Maven’s location assumptions:
 source code: ${basedir}/src/main/java
 Resources: ${basedir}/src/main/resources
 Tests: ${basedir}/src/test

•  Other assumptions:
 Want to produce a JAR file in ${basedir}/target
 Compile byte code to ${basedir}/target/classes

How does this philosophy help us?

•  Ant-based builds define locations
 No built-in idea of where source code or

resources are
 User has to supply this information  more work

for us!!

How does this philosophy help us?

<target name="compile"	
 description="Compile the source code">	
 <mkdir dir="build/classes"/>	
 <javac srcdir="src"	
 destdir="build/classes"	
 debug="on">	
 <include name="**/*.java"/>	
 <classpath refid="build.class.path"/>	
 </javac>	
</target>	

Could be for any project:

•  Beyond location conventions…
•  Core plugins apply a common set of

conventions for compiling source code,
packaging distributions, generating web
sites, and many other processes
 Example: similar to Ant compile target

•  Little effort:
 Put source in the correct directory
 Maven handles the rest

•  Users may feel forced to use a particular
methodology or approach

•  Most defaults can be customized
•  Can create custom plugins for your

requirements

5/6/09

6

Maven Build Lifecycle
•  Defined by a list of build phases
•  Example build phases

 compile - compile the source code of the project
 test - test the compiled source code using a suitable

unit testing framework
 package - take the compiled code and package it in its

distributable format, such as a JAR
•  When execute a phase, executes life cycle’s

previous phases first, in order
 E.g., calling package would execute compile and then

test

Maven Build Lifecycle
•  3 built-in build lifecycles

 default lifecycle handles project deployment
 clean lifecycle handles project cleaning
 site lifecycle handles the creation of project's site

documentation

•  Two plugins available •  Automate process of building various
“artifacts” from your source code
 Examples: compile, distribute (jars),

documentation, commercial_version, …

• Why is there more than one build tool?
• What are the similarities and differences

between make, ant, and maven?

• Why does the tool exist? What is its
purpose?

• What can the tool do?
• What can’t the tool do?

 Because it hasn’t been done? Because of
current technology limitations? Or some other
limitations?

 If because it hasn’t been done, what can we
need to do to change that?

•  Read “Source Code Exploration Using
Google”
 Summary on Sakai

