
5/6/09

1

•  Eclipse
•  Build tools

 Make
 Ant
 Maven

• What are tools meant to do?
 Why do we create them?

• Where can we apply tools to the software life
cycle?

•  Integrated Development Environment
 Developing
 Compiling
 Running
 Debugging
 Packaging

•  Entirely object-oriented
•  Similar to Python

Program.java	

Written in Java
Programming Language

Compiler
Program.class	

Bytecode: machine
code for a virtual CPU

javac	

Multiple Views

Editor

Configurable, customizable

•  Make a new Java project called First
•  Create a new class called Hello
•  Create a new jar file

 jar is a Java archive, similar to a tape archive
(tar)
•  Includes all the class files needed to run the

application/for the library
 Export

•  Java Jar file

5/6/09

2

•  Import
 Existing projects into workspace
 Select archive file:

•  /home/courses/cs297/handouts/day7/jotto.jar
 Should give the name “Jotto” to the project

•  Run Jotto
 Click the play button on the project, on jotto, or

on jotto.Jotto
•  Like Lingo

 Start a new game

•  Allow you to customize your Eclipse
•  Provide new perspectives, views for Eclipse
•  Download and install the plugins you want

•  Pieces typically distributed:
 Binaries/Bytecode
 Required libraries
 Data files
 Documentation

•  Typically packaged in an archive:
 e.g., tgz, jar, zip, rpm

•  May need all of these or some subset of
them

artifacts

• make: A program for building and
maintaining computer programs
 Developed at Bell Labs around

1978 by Stu Feldman
•  Now Google VP Engineering
•  Past President of ACM

•  Instructions stored in a special
format file called a makefile

http://www.gnu.org/software/make/	

•  Contains the build instructions for a project
 Automatically updates files based on a series of

dependency rules
 Supports multiple configurations for a project

•  Only re-compiles necessary files after a change
(conditional compilation)
 Major time-saver for large projects
 Uses timestamps of the intermediate files

•  Typical usage: executable is updated from
object files which are in turn compiled from
source files

5/6/09

3

simulator.c	queue.c	 customer.c	

queue.o	 customer.o	 simulator.o	

simulator	

compile

link

generated original simulator.y	

# Example Makefile	
CC=g++	
CFLAGS=-g –Wall -DDEBUG	
OBJECTS=customer.o simulator.o queue.o	

simulator: $(OBJECTS)	
 $(CC) $(CFLAGS) –o simulator $(OBJECTS)	
simulator.o: simulator.c	
 $(CC) $(CFLAGS) –c simulator.c	

customer.o: customer.c	
 $(CC) $(CFLAGS) –c customer.c	
…	
clean:	
 rm $(OBJECTS) simulator	

$ make 	
$ make clean	
$ make –f other_makefile	

Running:

Rules/
Targets

Dependencies

Commands

Variables

By default looks for
makefile	

Must be a tab

•  Java-based build tool
•  Similar to make

http://ant.apache.org/	

Make Ant

Shell-based, makefile Java,
XML config files

•  Looks similar to HTML
 HTML’s stricter brother

•  Designed to structure, store, and transport
data
 Text file PORTABLE!

•  Made up of nested elements
 Hierarchy of data

•  Schema
 Define your own tags, tag nesting, tag

attributes

<email>	
	<to>you@somewhere.org</to>	
	<from>me@here.org</from>	
	<subject>Reminder</subject>	
	<message>Don't forget me this

weekend!</message>	
</email>	

<email>	
	<to>you@somewhere.org</to>	
	<from>me@here.org</from>	
	<subject>Reminder</subject>	
	<message>Don't forget me this

weekend!</message>	
</email>	

Root element

child
elements

Close every element you open

5/6/09

4

<imdb>
 <movie category=“comedy”>
 <title lang=“en”>Juno</title>
 <title lang=“es”>La joven vida de Juno</title>
 </movie>
 <movie category=“comedy”>
 <title lang=“en”>Chicken Run</title>
 <title lang=“de”>Hennen Rennen</title>
 </movie>

</imdb>

attribute •  Starts with XML version:

•  Root element: project	
 name attribute: name of the project
 default attribute: default target	
 basedir attribute: directory to run from

<?xml version="1.0” encoding="UTF-8"?>	

<project name="Hello World”
default="Hello" basedir=".">	

In Eclipse

•  Target: has a name, set of tasks to execute
•  Can specify which targets to execute

 If no target given, use project’s default
•  Can depend on other targets
•  Examples:

 Compile
 Distribute

•  Needs compile

<target name=“compile"/>	
<target name=“jar"
depends=“compile"/>	

Closes open tag

<target name="compile"	
 description="Compile the source code">	
 <mkdir dir="build/classes"/>	
 <javac srcdir="src"	
 destdir="build/classes"	
 debug="on">	
 <include name="**/*.java"/>	
 <classpath refid="build.class.path"/>	
 </javac>	
</target>	

What does this do?

build-replay.xml	

•  Like a variable: defines a name and its value:
 <property name=“vname” value=“vvalue” />	

•  To use property, use ${name}	

•  In build.xml in Eclipse, add two
properties:
 HelloText=Hello
 WorldText=World

•  Add two new targets
•  First:

 Use ctl-space to auto-complete

•  Second: use Eclipse’s design view
•  Run file

<target name="Hello”>	
 <echo>${HelloText}</echo>	
</target>	

5/6/09

5

# Example Makefile	
CC=g++	
CFLAGS=-g –Wall -DDEBUG	
OBJECTS=customer.o simulator.o queue.o	

simulator: $(OBJECTS)	
 $(CC) $(CFLAGS) –o simulator $(OBJECTS)	
simulator.o: simulator.c	
 $(CC) $(CFLAGS) –c simulator.c	

customer.o: customer.c	
 $(CC) $(CFLAGS) –c customer.c	
…	
clean:	
 rm $(OBJECTS) simulator	

$ make 	
$ make clean	
$ make –f other_makefile	

Running:

Rules/
Targets

Dependencies

Commands

Variables

By default looks for
makefile	

•  Maven: Yiddish word meaning accumulator
of knowledge

•  For building and managing any Java-based
project

http://maven.apache.org/	

•  Maven’s location assumptions:
 source code: ${basedir}/src/main/java
 Resources: ${basedir}/src/main/resources
 Tests: ${basedir}/src/test

•  Other assumptions:
 Want to produce a JAR file in ${basedir}/target
 Compile byte code to ${basedir}/target/classes

How does this philosophy help us?

•  Ant-based builds define locations
 No built-in idea of where source code or

resources are
 User has to supply this information more work

for us!!

How does this philosophy help us?

<target name="compile"	
 description="Compile the source code">	
 <mkdir dir="build/classes"/>	
 <javac srcdir="src"	
 destdir="build/classes"	
 debug="on">	
 <include name="**/*.java"/>	
 <classpath refid="build.class.path"/>	
 </javac>	
</target>	

Could be for any project:

•  Beyond location conventions…
•  Core plugins apply a common set of

conventions for compiling source code,
packaging distributions, generating web
sites, and many other processes
 Example: similar to Ant compile target

•  Little effort:
 Put source in the correct directory
 Maven handles the rest

•  Users may feel forced to use a particular
methodology or approach

•  Most defaults can be customized
•  Can create custom plugins for your

requirements

5/6/09

6

Maven Build Lifecycle
•  Defined by a list of build phases
•  Example build phases

 compile - compile the source code of the project
 test - test the compiled source code using a suitable

unit testing framework
 package - take the compiled code and package it in its

distributable format, such as a JAR
•  When execute a phase, executes life cycle’s

previous phases first, in order
 E.g., calling package would execute compile and then

test

Maven Build Lifecycle
•  3 built-in build lifecycles

 default lifecycle handles project deployment
 clean lifecycle handles project cleaning
 site lifecycle handles the creation of project's site

documentation

•  Two plugins available •  Automate process of building various
“artifacts” from your source code
 Examples: compile, distribute (jars),

documentation, commercial_version, …

• Why is there more than one build tool?
• What are the similarities and differences

between make, ant, and maven?

• Why does the tool exist? What is its
purpose?

• What can the tool do?
• What can’t the tool do?

 Because it hasn’t been done? Because of
current technology limitations? Or some other
limitations?

 If because it hasn’t been done, what can we
need to do to change that?

•  Read “Source Code Exploration Using
Google”
 Summary on Sakai

