Obijectives

Eclipse
Build tools
Make

Ant
Maven

May 6, 2009 Sprenkle - CS297

Review

What are tools meant to do?
Why do we create them?

Where can we apply tools to the software life
cycle?

May 6, 2009 Sprenkle - CS297

Eclipse: IDE

Integrated Development Environment
Developing
Compiling
Running
Debugging
Packaging

May 6, 2009 Sprenkle - CS297

Java Programming Language

Entirely object-oriented
Similar to Python

Compiler

javac Z

Program. java [L Program.class

I

Written in Java
Programming Language

Bytecode: machine
code for a virtual CPU

Sep 8, 2008 Sprenkle - CS209 4

Multiple Views

7

Eclipse: Java Perspective

Editor

Eclipse Warm Up

Make a new Java project called First
Create a new class called Hello
Create a new jar file

jar is a Java archive, similar to a tape archive
(tar)
Includes all the class files needed to run the
application/for the library

Export
Java = Jar file

May 6, 2009 Sprenkle - CS297

5/6/09

More using Eclipse

Import
Existing projects into workspace
Select archive file:
/home/courses/cs297/handouts/day7/jotto.jar
Should give the name “Jotto” to the project
Run Jotto
Click the play button on the project, on jotto, or
on jotto.Jotto
Like Lingo
Start a new game

May 6, 2009 Sprenkle - CS297

Eclipse Plugins

Allow you to customize your Eclipse
Provide new perspectives, views for Eclipse
Download and install the plugins you want

May 6, 2009 Sprenkle - CS297

BUILD TOOLS

May 6, 2009 Sprenkle - CS297

Distributing Software

Pieces typically distributed:
Binaries/Bytecode
Required libraries
Data files
Documentation

Typically packaged in an archive:

e.g., tgz, jar, zip, rpm

May need all of these or some subset of

them

artifacts

May 6, 2009 Sprenkle - CS297

Related Tools: make

make: A program for building and
maintaining computer programs
Developed at Bell Labs around
1978 by Stu Feldman
Now Google VP Engineering)
Past President of ACM
Instructions stored in a special
format file called a makefile

‘ http://www.gnu.org/software/make/

May 6, 2009 Sprenkle - CS297

make Features

Contains the build instructions for a project
Automatically updates files based on a series of
dependency rules
Supports multiple configurations for a project

Only re-compiles necessary files after a change

(conditional compilation)

Major time-saver for large projects
Uses timestamps of the intermediate files

Typical usage: executable is updated from

object files which are in turn compiled from

source files

May 6, 2009 Sprenkle - CS297

5/6/09

Dependency Graph

simulator
link
| queue.o | |customer‘.o| |s"Lmu'lator‘.o
compile
’ queue.c ‘ ’customer'.c‘ simulator.c
| original |] generated @
May 6, 2009 Sprenkle - CS297

Example Makefile

Example Makefile

CC=g++ Variables
CFLAGS=-g -Wall -DDEBUG
OBJECTS=customer.o simulator.o queue.o

simulator: $COBJECTS) Dependencies
$(CC) $(CFLAGS) -o si or $(OBJECTS)
simulator.o: simulator.c
Rules/ $(CC) $(CFLAGS) -c simulator.c

Targets
customer.o: customer.c
Must be a tab == $(CC) $(CFLAGS) -c customer.c

Clean:
rm $COBJECTS) simulator Commands

$ moke < By default looks for
Running: $ make clean makefile
$ make —f other_makefile

May 6, 2009 Sprenkle - CS297

Related Tools: Apache Ant

Java-based build tool
Similar to make

Java,

Shell-based, makefile XML config files

http://ant.apache.org/

May 6, 2009 Sprenkle - CS297

XML: eXtensible Markup Language

Looks similar to HTML
HTML’s stricter brother
Designed to structure, store, and transport
data
Text file > PORTABLE!
Made up of nested elements
Hierarchy of data

Schema
Define your own tags, tag nesting, tag
attributes
May 6, 2009 Sprenkle - CS297

XML Example

<email>
<to>you@somewhere.org</to>
<from>me@here.org</from>
<subject>Reminder</subject>
<message>Don't forget me this

weekend!</message>

</email>

May 6, 2009 Sprenkle - CS297

XML Example

Root element

<email>
<to>you@somewhere.org</to>
child <from>me@here.org</from>
elements <subject>Reminder</subject>
<message>Don't forget me this
weekend!</message>
</email>

Close every element you open

May 6, 2009 Sprenkle - CS297

5/6/09

XML Example

attribute

<imdb>
<movie category=“comedy”>
<title lang="en”>Juno</title>
<title lang="es">La joven vida de Juno</iitle>
</movie>
<movie category="comedy”>
<title lang="en">Chicken Run</title>
<title lang="de”>Hennen Rennen</title>
</movie>
</imdb>

May 6, 2009 Sprenkle - CS297

Ant buildfile: build.xml

Starts with XML version:
<?xml version="1.0" encoding="UTF-8"7>

Root element: project
name attribute: name of the project
default attribute: default target
basedir attribute: directory to run from

<project name="Hello World”
default="Hello" basedir=".">

May 6, 2009 Sprenkle - CS297 In Eclipse

Ant target

Target: has a name, set of tasks to execute
Can specify which targets to execute
If no target given, use project’s default
Can depend on other targets
Examples:
Compile
Distribute
Needs compile

Closes open tag

<target name=“compile"/>
<target name=“jar"
depends=“compile"/>

May 6, 2009 Sprenkle - CS297

Example Ant target

What does this do?

<target name="compile"
description="Compile the source code">
<mkdir dir="build/classes"/>
<javac srcdir="src"
destdir="build/classes"
debug="on">
<include name="**/*_java"/>
<classpath refid="build.class.path"/>
</javac>
</target>

build-replay.xml

May 6, 2009 Sprenkle - CS297

Ant property

Like a variable: defines a name and its value:
<property name=“vname” value=“vvalue” />

To use property, use ${name}

Inbuild.xml in Eclipse, add two
properties:

HelloText=Hello

WorldText=World

May 6, 2009 Sprenkle - CS297

Ant in Eclipse

Add two new targets
First:
Use ctl-space to auto-complete

<target name="Hello”>
<echo>${HelloText}</echo>
</target>

Second: use Eclipse’s design view
Run file

May 6, 2009 Sprenkle - CS297

5/6/09

See similarities to Ant?

Example Makefile)
CC=g++ Variables
CFLAGS=-g -Wall -DDEBUG
OBJECTS=customer.o simulator.o queue.o

simulator: $COBJECTS) Dependencies
$(CC) $(CFLAGS) —o sil or $(OBJECTS)
simulator.o: simulator.c
Rules/ $(CC) $(CFLAGS) —c simulator.c

Targets customer.o: customer.c
$(CC) $CCFLAGS) —c customer.c

Clean:
rm $(OBJECTS) simulator Commands

By default looks for

— :
$ nake makefile

Running: $ make clean
$ make —f other_makefile

May 6, 2009 Sprenkle - CS297

Apache Maven

Maven: Yiddish word meaning accumulator
of knowledge

For building and managing any Java-based
project

http://maven.apache.org/

May 6, 2009 Sprenkle - CS297

Maven Philosophy: Convention Over
Configuration

Maven’s location assumptions:
source code: ${basedir}/src/main/java
Resources: ${basedir}/src/main/resources
Tests: ${basedir}/src/test

Other assumptions:
Want to produce a JAR file in ${basedir}/target
Compile byte code to ${basedir}/target/classes

How does this philosophy help us?‘

May 6, 2009 Sprenkle - CS297

Maven Philosophy: Convention Over
Configuration

'How does this philosophy help us? |

Ant-based builds define locations

No built-in idea of where source code or
resources are

User has to supply this information - more work

for us!! <target name="compile"
description="Compile the source code">
<mkdir dir="build/classes"/>
<javac srcdir="src"
destdir="build/classes"
debug="on">
<include name="**/*_ java"/>
<classpath refid="build.class.path"/>
</javac>
May 6, 2009 </target>

Could be for any project:

Maven Philosophy: Convention Over
Configuration

Beyond location conventions...
Core plugins apply a common set of
conventions for compiling source code,
packaging distributions, generating web
sites, and many other processes

Example: similar to Ant compile target
Little effort:

Put source in the correct directory

Maven handles the rest

May 6, 2009 Sprenkle - CS297

Consequences of Convention Over
Configuration

Users may feel forced to use a particular
methodology or approach

Most defaults can be customized

Can create custom plugins for your
requirements

May 6, 2009 Sprenkle - CS297

5/6/09

Maven Build Lifecycle

Defined by a list of build phases
Example build phases
compile - compile the source code of the project

test - test the compiled source code using a suitable
unit testing framework

package - take the compiled code and package it in its
distributable format, such as a JAR
When execute a phase, executes life cycle’s
previous phases first, in order

E.g., calling package would execute compile and then
test

Maven Build Lifecycle

3 built-in build lifecycles
default lifecycle handles project deployment
clean lifecycle handles project cleaning

site lifecycle handles the creation of project's site
documentation

Eclipse Maven Plugin

Two plugins available

May 6, 2009 Sprenkle - CS297

Summary: Build Tools

Automate process of building various
“artifacts” from your source code

Examples: compile, distribute (jars),
documentation, commercial_version, ...

Why is there more than one build tool?

What are the similarities and differences
between make, ant, and maven?

May 6, 2009 Sprenkle - CS297

Running Discussion Questions

Why does the tool exist? What is its
purpose?

What can the tool do?

What can’t the tool do?

Because it hasn’t been done? Because of
current technology limitations? Or some other
limitations?

If because it hasn’t been done, what can we
need to do to change that?

May 6, 2009 Sprenkle - CS297

For Next Time

Read “Source Code Exploration Using
Google”

Summary on Sakai

May 6, 2009 Sprenkle - CS297

5/6/09

