
5/8/09

1

•  Tools for Finding Concerns
 Concepts
 Google Eclipse Search
 Find Concept

• What is the purpose of tools like make, ant,
and maven?

•  How are they similar to each other?
•  How are they different from each other?
• What don’t they do for us? What do we still

have to do?

60-90% software costs spent on reading
and navigating code for maintenance*

Corrective (emergency fixes, routine debugging)
Adaptive (new environment/input form)

Perfective (enhancements)

Why do maintenance tasks require so
much comprehension overhead?

*[Erlikh] Leveraging Legacy System Dollars for E-Business
Source: Shepherd, AOSD 2007

•  In maintenance, must identify high-level idea
(concept) AND locate, comprehend, and
change the concept’s implementation
(concern)

•  Example:
 Concept: Students register for classes
 Concern: Code that looks up student,

determines if student has prerequisite for class,
adds student to class list or to a wait list, …

Time Time

Concerns are often
crosscutting

Source: Shepherd, AOSD 2007

Bug Report (concept) Code (concern)

Time
Source: Shepherd, AOSD 2007

5/8/09

2

Time

…

Source: Shepherd, AOSD 2007

Time

…

Lost effort /
duplicate work

Problems involving the
same concern occur

multiple times

Source: Shepherd, AOSD 2007

•  Find, collect, and understand all source code
related to a particular concept

•  Foundation of many software maintenance
tasks

Concern
Location

Fix Concern

Upgrade
Concern

Adapt
Concern

“Copy”
Concern

Source: Shepherd, AOSD 2007

•  Problem?
 Limitations of state of the art
 Goals

Denys Poshyvanyk, Maksym Petrenko,
Andrian Marcus, XinrongXie, DapengLiu

ICSM 2006
•  Regular expressions

  Less intuitive, strict formulation
•  Information retrieval (IR)

 Formulation of queries with multiple words
 Problems:

•  Computational efficiency
•  Online re-indexing of software as it changes
•  Not widespread adoption

•  Google Desktop Search
 Not project-specific search; searches entire file system
 Requires an internet browser

•  User has to switch between IDE and the browser

5/8/09

3

•  Apply IR search techniques to searching
code
 Needs to be fast

•  Solution that is widely adopted

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Integration of Google Desktop Search +
Eclipse Development Environment.

•  Plugin: Google Eclipse Search (GES)

•  On-the-Fly preprocessing and indexing of the
context

•  Continual indexing
 Maintains and updates content location changes
 Accurate results

•  Immediate response for queries
•  History of searches
•  Advanced search options

 Boolean operators
•  Sorting of the results

 Relevance
 Dates

•  IR-based searching
 Multiple term queries
 Natural language queries
 Boolean operators
 ranking of search results

•  Scalability & reliability
  Important for massive file repositories, such as large

scale software systems
•  Search results in Eclipse

 Link between search results and source code editor

•  Similar to File Search in Eclipse
•  Type a Query into the GES dialogue Box
•  Specify the Scope of the search

 workspace
 selected resources
 enclosing projects
 working sets

•  After the query, the search is displayed in GES
search Results Tab

•  Results can be explored by browsing in the
editor

5/8/09

4

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Evaluation?
 Results?

•  Performed on Violet
 Cross-platform UML Editor written in Java
 Has 65 classes + 448 methods + 9000 LOC

•  Test with common development task:
 Request for a new feature: “introduce a user-

defined arrow type for the class diagram”

•  Q1 : “arrow class diagram”
 No matches

•  Q2: “edge class diagrams”
 Results: 11 Files
 UseCaseDiagramGraph,
StateDiagramGraph,
SequenceDiagramGraph,
StateTransitionEdge,
ObjectDiagramGraph, NoteNode,
ObjectNode, FieldNode,
ImplicitParameterNode,
ClassDiagramGraph, CallNode	ClassDiagramGraph

match

• ClassDiagramGraph was relevant to
concept “edge class diagrams”

•  But so were ArrowHead,
ArrowHeadEditor,
ClassDiagramGraphStrings	

Hmm….

5/8/09

5

•  Problem: concept location task in Violet

•  Goal: “to locate the place in the source code
which specifies the width of the class
diagrams”

•  File: “value saved in DEFAULT_WIDTH
variable”

•  Q1: “default width”
 Gets correct answer

•  Q1: “default width”
 No results

•  Q2: ”default”
 Closer

•  Q3: refine previous results:“width”
 Much closer

•  BUT, could have searched for “default*width”
for same results as GES
 Less intuitive, could require more complex query

•  GES returned good results in the first query
•  GES is faster than File Search
•  GES returns ranked list of results
•  User investigates fewer LOCs with GES
•  Developers learn relevant information faster

than File Search

Convinced?

•  Compare GES and Eclipse search on larger
code bases than Violet

•  Subjects
 Art of illusion: Java 3D modeling studio

•  442 classes , 20 interfaces, 100,838 LOC
 Eclipse Version 3.1 + complete sources

•  20000 files
•  2 million LOC

•  Methodology
 10 queries were run on each system
 Measured average response time

•  GES: faster response time
•  GES scales well with code size

5/8/09

6

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Evaluation?
 Results?

•  Limitations?
•  Conclusions

•  GES uses GDS
 GDS is not open-source
 Requires GDS’s background indexing
 Only when user’s computer is idle
 User has to wait for the (re)-indexing of the file
 None of the GDS APIs handles this issue

•  How relevant are the results?
 Got 11 files but only 1 was relevant

•  Small case studies
 Needs further evaluation to draw conclusions

How much of a
limitation is this?

•  Integrated GDS into Eclipse
 Improves source code searching
 Easy-to-adopt approach

•  GES allows to perform searches in source
code and documentation

•  Faster than Eclipse’s file search

•  Eclipse SDK 3.2 or higher
•  Google Desktop Search (GDK) 2.0 or higher
•  Java Run-Time Environment (JRE) 1.5 or

higher

http://ges.sourceforge.net/	

•  Think about how we write OO programs and
how you figure out how they work
 Given a problem, what are the objects? What

are the objects’ methods?

 Example: recipe writing factory

•  Return large
result sets

•  Return
irrelevant
results

•  Return hard-to-
interpret result
sets

Source: Shepherd, AOSD 2007

5/8/09

7

Recipe for Vegetable Soup
1.  Place asparagus and onion in a saucepan with 1/2

cup vegetable broth. Bring the broth to a boil, reduce
heat and let simmer until the vegetables are tender.

2.  Reserve a few asparagus tips for garnish. Place
remaining vegetable mixture in an electric ...

Procedural instructions are easy to read.
Decompose into objects

Source: Pollock talk 2006

//Place the Beef into the pan	
place(Pan p){	
	checkIfFitsInPan(p);
	actuallyPlaceInPan(p);	

}	

/* Make sure the beef fits
in the pan, before Placing
the Beef into the pan */
checkIfItFitsInPan(Pan p)
{ ... } 	

//Place the beef into the pan	
actuallyPlaceInPan(Pan p) {	
 ...	
} 	

Source: Pollock talk 2006

Bug: something goes wrong
when I place something in

the saucepan.

//Place the Beef into the pan	
place(Pan p){	
	checkIfFitsInPan(p);
	actuallyPlaceInPan(p);	

}	

/* Make sure the beef fits
in the pan, before Placing
the Beef into the pan */
checkIfItFitsInPan(Pan p)
{ ... } 	

//Place the beef into the pan	
actuallyPlaceInPan(Pan p) {	
 ...	
} 	

Identification problem:
Actions scattered across

several methods

Bug: something goes wrong
when I place something in

the saucepan.

Problem: How can we find
actions in a noun's world?

Source: Pollock talk 2006

//Place the Beef into the pan	
Beef.place(Pan p){	
	checkIfFitsInPan(p);
	actuallyPlaceInPan(p);	

}	

/* Make sure the beef fits in
the pan, before Placing the
Beef into the pan */
Beef.checkIfItFitsInPan(Pan p)
{ ... } 	

//Place the beef into the pan	
Beef.actuallyPlaceInPan(Pan p)
{	
 ...	
} 	

//Place the onion in the pan	
Onion.place(Pan p){ 	
... 	
}	

Source: Pollock talk 2006

Extract Clues with
Natural Language
Processing (NLP)

“Using Natural Language Program Analysis to Locate and
Understand Action-Oriented Concerns”
Shepherd, Fry, Gibson, Pollock, and Vijay-Shanker
AOSD 2007

•  Extract verb-direct object pairs

•  Example: Place the item in the pan
•  Example: Place the beef in the pan

Source: Pollock talk 2006

5/8/09

8

•  Extract verb-direct object pairs
 Example: Place the item in the pan
 Example: Place the beef in the pan

• Where to extract
 Method signatures
 Comments

//Chop the beef into cubes	
chop() {	

	unwrap();	
	slice(CUBES);	

}	

Source: Pollock talk 2006

•  Extract verb-direct object pairs
 Example: Place the item in the pan
 Example: Place the beef in the pan

• Where to extract
 Method signatures
 Comments

•  Make recommendations
 Stemmed/Rooted: complete, completing
 Synonym: finish, complete
 Co-location: completeWord()

Source: Pollock talk 2006

concept

Find-Concept
Concrete query

Recommendations

Source Code

Method a

Method b Method c

Method d Method e

NL Source
Code Model

Result Graph

1. More
effective search

2. Improved
search terms

3. Understandable
results

Source: Shepherd, AOSD 2007

Natural
Language
Information

•  Target Concern: Automatically finish a word

Concern Location Task:
Find code for the concept
automatically finish a word

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of Methods

Result
Graph

Concern Comprehension

Finish the word
automatically

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

5/8/09

9

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of
Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

Recommendations

DO
Ordered list of verb
recommendations

•  Stemmed verb

•  Summary of reasons

Source: Shepherd, AOSD 2007

Recommendations

Natural language
and program

knowledge to make
recommendations

DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of
Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

5/8/09

10

DO DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of
Methods

Result
Graph

Concern Comprehension

Query State Find-Concept Process

DO

Source: Shepherd, AOSD 2007

Abstract
Initial-Query

Concrete
Initial-Query

Verb-Query and
Direct-Object-Query
Initialized

Expanded Verb-Query
and Direct-Object-
Query

List of
Methods

Result
Graph

Concern Comprehension

State Find-Concept Process

Expanded Verb-Query
and Direct-Object-
Query

Result
Graph

Source: Shepherd, AOSD 2007

 Gain understanding of concern

 Answer common development questions

Source: Shepherd, AOSD 2007

•  Give users concern location tasks
  Use Eclipse Lexical Search (ELex), Google Eclipse Search

(GES), and Find-Concept to find relevant methods

•  Measure query’s effectiveness
  Precision: ratio of # of relevant procedures retrieved to total #

of procedures retrieved
•  High precision: result set contains few irrelevant results

  Recall: ratio of relevant procedures retrieved to the total # of
relevant procedures existing in the source application
•  High recall: most of relevant results are included in the result set

•  Measure user effort
  Measured the amount of time each user required to form a

satisfactory query for each task

Source: Shepherd, AOSD 2007

•  Query Effectiveness
 FC > Eclipse Search with

statistical significance
 FC >= GES on 7/9 tasks
 FC is more consistent than

GES
•  User Effort

 FC = Eclipse Search = GES

FC is more consistent and more effective in
experimental study without requiring more effort

Across all tasks

Source: Shepherd, AOSD 2007

5/8/09

11

• What didn’t the authors evaluate that you
might be interested in?

• What are Find-Concept’s assumptions?
 How do those assumptions limit its

effectiveness?

•  Comments: exist, descriptive, accurate, right
level
 May not exist, may be misleading, inaccurate, at

a different granularity
•  Variable and method names are descriptive,

accurate
 May be misleading

•  Use program structure
•  Unfamiliar terms:

 Call graphs, method call chains
 Control flow
 Variable def-use
 Type hierarchy

•  Due Monday

•  15% of grade
•  Focus on UNIX commands, Bash scripting

 UNIX philosophy
 Reading and writing Unix commands
 Understand purpose of various tools

•  Software tools
 What can they do?

•  Tool types we’ve covered so far
 Build tools
 Search/navigation tools

•  Bring questions on Monday

•  Submit
 New assignment on paper and electronically

•  Directory name: <assign#>.doover
 Original assignment

•  So I can allocate points appropriately

•  Due 1 week after returned

