
5/29/09

1

•  Refactoring
• Wrapping up Software Tools

Emerson Murphy-Hill
Portland State

 (now UBC)

Chris Parnin
 Georgia

Tech

Andrew Black
 Portland State

•  Problem?
 Limitations of state of the art
 Goals

Murphy-Hill, Parnin, Black
ICSE 2009

Study from one perspective ….

Murphy-Hill, ICSE 09

•  Study refactoring from several perspectives
•  Confirm or refute previous assumptions/

results
•  Provide results to guide tool developers in

developing new refactoring tools
class Foo {	

}	

class Bar {	
 int a;	
 public Bar(int a) {	
 this.a = a;	
 }	
}	

class Bar {	

}	

class Bar {	
 int a;	
 private Bar(int a) {	
 this.a = a;	
 }	
 public static Bar create(int a){	
 return new Bar(a);	
 }	
}	

Murphy-Hill, ICSE 09

Refactoring: a change in code that does not affect
program behavior

Goal: Code is easier to read/understand/extend/use

5/29/09

2

class Foo{	

}	

class Bar {	
 int a;	
 public Bar(int a) {	
 this.a = a;	
 }	
}	

class Bar{	

}	

class Bar {	
 int a;	
 private Bar(int a) {	
 this.a = a;	
 }	
 public static Bar create(int a){	
 return new Bar(a);	
 }	
}	

Correctness

&

Speed

Murphy-Hill, ICSE 09

R R

class Foo{	

}	

class Bar{	
 int a;	
 public Bar(int a){	
 this.a = a;	
 }	
}	

class Bar{	

}	

class Bar{	
 int a;	
 private Bar(int a){	
 this.a = a;	
 }	
 public static Bar create(int a){	
 return new Bar(a);	
 }	
}	

Time

…

Murphy-Hill, ICSE 09

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Study four sets of user data about refactoring
Name Characteristics
Users • Mylyn Monitor tool

•  41 programmers in Eclipse
• Eclipse commands

Everyone • Eclipse Usage Collector
•  130,000 Java developers
• Eclipse commands

Toolsmiths • Refactoring histories
•  4 developers of Eclipse refactoring tools

Eclipse CVS • Version history of Eclipse and Junit
• Same developers as Toolsmiths

•  Answer research questions based on the
four data sets
 Do users and toolsmiths differ?
 Do programmers repeat refactorings?
 Do users configure refactoring tools?
 Do commit messages predict refactoring?
 …

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Evaluation?
 Results?

Most surprising/interesting/important result?

5/29/09

3

R R R R R R R

R R R R R R R R R R R R

Do Programmers Refactor Often?

R R R R R R R R R R R R

root-canal refactoring
versus

versus

versus

Do Programmers Usually Floss Refactor?

Do Programmers Use Refactoring Tools Often?

Murphy-Hill, ICSE 09 Murphy-Hill, ICSE 09

•  If floss refactoring is more common, then
tools should support floss refactoring

A tool user interface
optimized for “flossings”

A tool user interface
optimized for “root canals”

Murphy-Hill, ICSE 09

Importance 

Floss refactoring better by prescription:

Case studies describe root canal refactorings:
Pizka [2004]
Bourqun and Keller [2007]

What We Already Know 

In almost all cases, I'm opposed to setting aside time for refactoring. In 
my view refactoring is not an activity you set aside time to do. 
Refactoring is something you do all the time in little bursts. 

         – Martin Fowler

Avoid the temptation to stop work and refactor for several weeks… 
Have your team get used to refactoring as part of their daily work.  

         – James Shore 

Murphy-Hill, ICSE 09

Floss
(Mixed)
Refactoring

Root Canal
(Pure)
Refactoring

0 0 1 1

 Repeated Process
For 17 Randomly Selected Commits
To a Large Open-Source Project

6 11

65% of Commits were Floss Refactoring

R

R
R

R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R

R

R

R

R

R
R
R

R

R

R

R
R
R
R

R
R
R

R
R
R

R
R
R R R

R
R R

R
R
R

R R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R
R

R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R

R

R

R
R
R

R

R

R
R
R

R

R

R
R
R

R

R

R

R

R
R
R

R

R

R
R
R

R

R

R
R

R

R

R

R
R
R

R

R

R
R

R

R

R

R

R
R
R

R

R

R
R

R

R

R

R

R
R
R

R

R

R

R

R

91% of refactorings occurred
during floss refactoring

M
ur

ph
y-

H
ill

, I
C

S
E

 0
9

What they did and results 

Find the
differences:

R R R R R R R

R R R R R R R R R R R R

Do Programmers Refactor Often?

R R R R R R R R R R R R versus

versus

versus

Do Programmers Usually Floss Refactor?

Do Programmers Use Refactoring Tools Often?

Murphy-Hill, ICSE 09

5/29/09

4

If programmers refactor often

➨refactoring research matters

➨refactoring tools may significantly speed up and
improve the correctness of programming

Murphy-Hill, ICSE 09

Importance 

According to Xing and Stroulia [2006]:

Refactoring is frequent in the Eclipse project

But their use of an automated detection tool means
the results are only a rough estimate

Murphy-Hill, ICSE 09

What We Already Know 

R R R R R R

Feb.1
Dev. 1

Feb.1
Dev. 2

Feb.3
Dev. 4

Feb.4
Dev. 3

Feb. 8
Dev. 3

Feb.11
Dev. 4

… Refactoring Tool
Logs in 2006/2007

Week 1 Week 2

4 Developers on
Same Open

Source Project

But this is tool-based refactoring.
If many refactorings are done without tools,

then refactoring is even more frequent.

2006
2007

Murphy-Hill, ICSE 09

What They Did & Results 

R R R R R R R

R R R R R R R R R R R R

Do Programmers Refactor Often?

R R R R R R

versus

versus

Do Programmers Usually Floss Refactor?

Do Programmers Use Refactoring Tools Often?

Murphy-Hill, ICSE 09

If programmers underuse refactoring tools:

➨ potential for tool improvements

➨ programmers are needlessly introducing errors
or refactoring slowly

Murphy-Hill, ICSE 09

Importance 
From their previous work

2 in 16 programming students used them (and
even then, 20% and 60% of the time)

Agile developers (in 2007, n=112) estimate that
they use them only 68% of the time

6 of 42 people who used Eclipse on networked
PSU computers used refactoring tools

Murphy-Hill, ICSE 09

What We Already Know 

5/29/09

5

Dev. 1 Commit
Feb. 1, 15:23

R

Feb. 1, 15:11
Dev. 1

Dev. 1 Commit
Feb. 1, 15:01

R

Feb.1, 16:00
Dev. 2

R

Jan. 29, 08:40
Dev. 2

R ? =

Murphy-Hill, ICSE 09

What They Did 

R

Feb.1, 15:59
Dev. 1

R

Feb.1, 12:23
Dev. 1

Murphy-Hill, ICSE 09

What They Did 

R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R

R

89% of refactorings  
were done without a tool 

… among toolsmiths. 

Murphy-Hill, ICSE 09

Results 

R R R R R R

R R R R R R R R R R R R

Do Programmers Refactor Often?

R R R R R R

versus

Do Programmers Usually Floss Refactor?

Do Programmers Use Refactoring Tools Often?

Murphy-Hill, ICSE 09

The kind of refactoring performed with tools differs from the
kind performed manually

Toolsmiths use a wider array of refactoring tools than tool
users

About 40% of tool-initiated refactorings occur in batches

About 90% of tool-initiated refactorings do not require
configuration of the tool

Messages written by programmers in version histories are
unreliable indicators of refactoring

About 40% of refactorings will not be detected by most
mining tools that detect refactoring from version histories

Murphy-Hill, ICSE 09

•  Problem?
 Limitations of state of the art
 Goals

•  Approach?
 Benefit?

•  Evaluation?
 Results?

•  Limitations?
•  Conclusions?

5/29/09

6

•  Subject (data) issues
 May not be representative
 May not be comprehensive
 Manual determination may be inaccurate

(conservative/optimistic)

The more ways we look at how people 
refactor, the more conEidence we have 
that we understand how people refactor 

In studying refactoring from new 
perspectives, our Eindings have conEirmed 
– and refuted – previous knowledge about 
how people refactor 

Murphy-Hill, ICSE 09

•  “Making Refactoring Tools Part of the
Programming Workflow”
 By Emerson Murphy-Hill and Andrew P. Black

Refactoring is a frequent practice, but tools that automate
refactoring are seldom used; this is a problem because
manual refactoring is slow and error-prone. One reason
for the underuse is that the tools have poor usability:
instead of fitting into programmers’ workflow, the tools get
in the way. We propose guidelines for improving the
usability of refactoring tools, and then apply these
guidelines to the design of two independent user interfaces
for tool activation—interfaces that are designed to make
the tool part of the programming workflow.

•  All their hypotheses were validated?
•  Take a closer look at configuration

hypothesis
•  Composite refactorings

•  One of four best paper awards at ICSE 2009
  Just two weeks ago!! Hot off the presses!

•  Different type of paper/research
 Analyze how people use tools
 Based on analysis how to improve tools
 Based on a couple large data sets

•  Contradicted previous research
 Better idea of what questions to ask about research

•  Healthy skepticism
•  Pulled together many things we’ve talked about this

semester
 Eclipse (usage data), CVS, Mylyn
 How to build useful tools that people will use

5/29/09

7

Our Focus

•  How do tools fit into the
model?
 How do they help us?

•  What are tools’ strengths
and limitations?

•  Automate common and/or tedious tasks
 More efficient
 Improve productivity
 Get “better” results

•  Still need to understand concepts/reason for
the tool

•  Think for us!
 Still need to design code to be robust/adaptable/

efficient
 Still need to code the logic
 Still need to try to prevent bugs

•  Just because we can do something with a
tool doesn’t always mean we should

•  Many available tools
 UNIX & UNIX-like systems (e.g., Linux)
 Open-source (Gnu, Apache, Eclipse)
 Proprietary
 Variety of purposes

•  Know what (free) tools are available, what
they do, how to use them

5/29/09

8

•  Often have to do a task over and over again
 Time-intensive to do by hand
 Shortcuts aren’t enough

• What we want
 Tools to make tasks easier
 Scripts to be able to repeat the tasks easier

•  At the end of this course, you will be able to
 Use a variety of Unix tools
 Apply a variety of tools to automate many tasks
 Describe the use of state-of-the-art software tools for

developing and maintaining large software systems,
based on hands-on experience

 Discuss when best to use different tools, the limitations
of the tools, and what they have to offer

 Discuss the challenges and strategies in building
software tools

 Communicate technical content in both oral and written
forms

•  Improve your productivity
•  Unix confidence/proficiency

 To intermediate user
•  Tool confidence

 Less intimidated by installing, learning new tools
•  Resume builder!

 Impress potential employers, advisors

•  Complete survey

