
CVS:
Concurrent Versioning System 

--Free version control system software--

Jack Ivy, Levi Throckmorton, and Stuart Vassey



History

● Developed by Dick Grune in the 1980s
– From an earlier versioning-system called 

Revision Control System (RCS)
● Originally created by Grune in order to 

collaborate with students since they had 
totally different schedules

● Released under the GNU General Public 
License

● A group of volunteers maintain code today
● Subversion created to improve on CVS

– (it's better)



The Basic Idea

● Software that keeps track of all work and all 
changes in a set of files

● Allows several developers to collaborate on a 
project

● Developers can work anywhere and any time 
they wish



Some Terminology

● Repository – the location that CVS stores 
and manages its modules

● Module – labels a single project (set of 
related files)

● Check Out – programmers receive copies of 
modules by checking them out

● Working Copy – what the checked out files 
make up



Terminology (con't)

● Commit – to submit changes made to the 
working copy (changes repository files)
– Programmers cannot commit changes unless 

they have most recent copy of files (current 
version)

● Current Version – collectively, most up to 
date files in the repository

● Update – to acquire the changes in the 
repository and add them to the working copy



How It Works

● (typically) Client-server architecture: server 
stores current version and its history

● Clients connect in order to “check out” a copy 
of the project

● As clients work on and change their working 
copy, commits can be made to change 
current version
– Version number automatically increments

● Server only accepts changes to most recent 
version



Features

● Use CVS to:
– Compare versions
– Get complete history of changes
– Check out project as of given date or revision 

number
– Update: only downloads changes
– Maintain separate branches of project

● Bug fixes
● Under current development
● Major changes



Different Uses

● Large software projects
– Programmers collaborate all over space-time to 

create awesome programs for us!
● Paper collaboration

– Professors at different Universities able to work 
together on papers

● Attempted to use with powerpoint, not much 
success there



How to Use

● In terminal
● Within eclipse

– Already built in!



Eclipse

● Ideal for large software projects
● Already integrated!
● Easy to use

– Don't have to remember command syntax



Terminal

● Useful for almost any project, large or small
● Any Unix machine works
● Syntax

– Must remember the commands



DEMOS



DEMO 1

Terminal Demo



Invoking CVS in the Terminal

● Format (like other programs) is “cvs {command}”
● Before starting, need to tell CVS location of repository

– Syntax: “cvs -d {nameOfRepos} {command}”
– Can (and should) set CVSROOT variable if working 

with same repository over and over
● Process of creating a new project = importing

– Syntax: “cvs import -m “msg” projname vendortag 
releasetag

● -m signifies a log message – every commit (including the 
initial import) has to have this

● Vendortag and releasetag largely unimportant



Various Basic Commands

● Checking out a project
– “cvs checkout (OR co) {proj}”

● Changing a file
– Simply open with file editor (“jedit {filename}”)
– Save changes

● Updating your working copy
– “cvs update {opt. Filename}”
– Modified files will appear with an “M” next to their 

name
– Can be restricted to certain files, usually is not



More Basic Commands

● Sending your modifications to repository
– “cvs commit (OR ci) -m 'msg' {opt. Filename}”
– Can commit certain files or all changed files
– When file is committed, last portion of revision 

number is incremented by one
● Checking status of files

– “cvs status {opt. Filename}”
– If no file specified, shows status of all files

● Finding out who did what to a file
– “cvs log {opt. Filename}”
– You really want to specify a filename here



Advantages and Limitations

● Advantages
– Quick and easy
– All in the terminal
– Simple language
– Not many tasks 

necessary

● Limitations
– You can't really see 

what you're doing
– The UNIX bad 

parent thing
– Potentially complex



DEMO 2

Eclipse Demo



Accessing a Repository

● Open eclipse in 
command line

● Go to file>new>other
● Select the cvs folder and 

choose project from 
cvs

● Select create a new 
repository location

● Use the following 
settings

● Next select use an 
existing module and 
choose jbidwatcher



Looking at the Project

● Can use the standard java perspective or cvs 
perspective

● Switch back and forth using buttons in top right 
corner

● Notice the version numbers next to the files
● When you modify a file a > will appear in front of 

the file name
● Right clicking on folders or files give you the cvs 

options. Many under team



Modify and Commit a File

● Everyone choose a java file from the 
javazoom.jlme.decoder folder

● Add in a //comment
● Save the file
● Commit the file back to the repository by right 

clicking on the file and selecting team>commit
● You must have the current version of the 

repository to be able to commit
● If you get a commit error, then right click on the 

file and select team>update



View Modification History

● Update using right click, team>update
● Right click again show in>history
● Go to the history pane in the bottom of 

eclipse



Compare and Replace Your File 
to the Repository

● Modify a file of your 
choice with a comment

● Right click on the file 
compare with>select 
HEAD

● This opens up the file in 
a dual pane 
comparison view

● You can compare the 
differences

● Replace a file
● Right click on file or 

folder and select 
replace>from HEAD


