I CVS:
I Concurrent Versioning System

--Free version control system software--

Jack Ivy, Levi Throckmorton, and Stuart Vassey

I History

* Developed by Dick Grune in the 1980s
I - From an earlier versioning-system called
Revision Control System (RCS)

» Originally created by Grune in order to
collaborate with students since they had
totally different schedules

» Released under the GNU General Public
License

* A group of volunteers maintain code today

» Subversion created to improve on CVS
— (it's better)

The Basic ldea

» Software that keeps track of all work and all
changes in a set of files

» Allows several developers to collaborate on a
project

» Developers can work anywhere and any time
they wish

Some Terminology

Repository — the location that CVS stores
and manages its modules

Module — labels a single project (set of
related files)

Check Out — programmers receive copies of
modules by checking them out

Working Copy — what the checked out files
make up

Terminology (con't)

« Commit — to submit changes made to the

working copy (changes repository files)
- Programmers cannot commit changes unless
they have most recent copy of files (current
version)

» Current Version — collectively, most up to
date files in the repository

» Update — to acquire the changes in the
repository and add them to the working copy

I How It Works

stores current version and its history

» Clients connect in order to “check out” a copy
of the project

* As clients work on and change their working
copy, commits can be made to change

current version
- Version number automatically increments

» Server only accepts changes to most recent
version

I (typically) Client-server architecture: server

I Features

- Compare versions

- Get complete history of changes

— Check out project as of given date or revision
number

- Update: only downloads changes

- Maintain separate branches of project
* Bug fixes
« Under current development
e Major changes

I e Use CVS to:

I Different Uses

- Programmers collaborate all over space-time to
create awesome programs for us!
» Paper collaboration
- Professors at different Universities able to work
together on papers
» Attempted to use with powerpoint, not much

success there

I » Large software projects

I How to Use

* Within eclipse

* |In terminal
I — Already built in!

I Eclipse

» Already integrated!

 Easy to use
- Don't have to remember command syntax

I |deal for large software projects

I Terminal

* Any Unix machine works
e Syntax
— Must remember the commands

I » Useful for almost any project, large or small

DEMOS

DEMO 1

Terminal Demo

I Invoking CVS in the Terminal

 Format (like other programs) is “cvs {command}”
» Before starting, need to tell CVS location of repository
- Syntax: “cvs -d {nameOfRepos} {command}”
- Can (and should) set CVSROOT variable if working
with same repository over and over
* Process of creating a new project = importing
- Syntax: “cvs import -m “msg” projname vendortag

releasetag
e -m signifies a log message — every commit (including the
initial import) has to have this
* Vendortag and releasetag largely unimportant

Various Basic Commands

« Checking out a project
- “cvs checkout (OR co) {pro}}’
* Changing a file
- Simply open with file editor (“jedit {filename}”)
- Save changes
* Updating your working copy
- “cvs update {opt. Filename}”
- Modified files will appear with an “M” next to their
name
— Can be restricted to certain files, usually Is not

» Sending your modifications to repository
I - “cvs commit (OR ci) -m 'msqg' {opt. Filename}”
- Can commit certain files or all changed files
- When file is committed, last portion of revision
number is incremented by one

» Checking status of files

- “cvs status {opt. Filename}’

- If no file specified, shows status of all files
* Finding out who did what to a file

- “cvs log {opt. Filename}”
- You really want to specify a flename here

More Basic Commands

I Advantages and Limitations

* Advantages * Limitations
I - Quick and easy - You can't really see
- All In the terminal what you're doing
- Simple language - The UNIX bad
- Not many tasks parent thing

necessary - Potentially complex

DEMO 2

Eclipse Demo

Accessing a Repository

Open eclipse In |
command line A ——
Go to file>new>other

Select the cvs folder and | =« =

Repository path: |/home/courses/cs297/shared/cvs

choose project from

CVS -
Select create a new
repository location

Use the following
settings
Next select use an

existing module and
choose jbidwatcher

Looking at the Project

Can use the standard java perspective or cvs
perspective

Switch back and forth using buttons in top right
corner

Notice the version numbers next to the files
When you modify a file a > will appear in front of
the file name

Right clicking on folders or files give you the cvs
options. Many under team

Modify and Commit a File

Everyone choose a java file from the
Jjavazoom.jime.decoder folder

Add in a /lcomment

Save the file

Commit the file back to the repository by right
clicking on the file and selecting team>commit
You must have the current version of the
repository to be able to commit

If you get a commit error, then right click on the
file and select team>update

I View Modification History

» Update using right click, team>update
I » Right click again show in>history
* Go to the history pane In the bottom of
eclipse

Compare and Replace Your File
to the Repository

* Modify a file of your * Replace a file
choice with a comment < Right click on file or

* Right click on the file folder and select
compare with>select replace>from HEAD
HEAD

e This opens up the file in
a dual pane

comparison view
* You can compare the
differences

