
9/20/17	

1	

Today’s	Objec4ves	
• Networking:	TCP	
• Threads	and	Synchroniza4on	

Sept	20,	2017	 1	Sprenkle	-	CSCI325	

Review	
• What	is	the	OSI	model?	
• What	are	the	theore4cal	layers?	

Ø What	are	their	real-world	equivalents?		What	do	
they	do?	

• How	are	packets	routed?	

• Online	book:	Introduc4on	to	Computer	Networks	
Ø On	course	web	site	

Sept	20,	2017	 Sprenkle	-	CSCI325	 2	



9/20/17	

2	

Sept	20,	2017	 Sprenkle	-	CSCI325	 3	

WHAT? 

TRANSPORT	LAYER	PROTOCOLS	
(LAYER	4)	
	

Sept	20,	2017	 Sprenkle	-	CSCI325	 4	



9/20/17	

3	

End-to-End	Protocols	

•  Layers	2	&	3	(Ethernet/WiFi/IP)	
Ø Focus	on	delivering	packets/frames	of	data	to	arbitrary	
hosts	connected	to	the	Internet	

Ø Rou4ng	protocols	for	geYng	packets	to	des4na4on	(Link	
State	Protocol)	

Ø  IP	is	best-effort	delivery	(no	reliability)	
•  Layer	4	

Ø Focuses	on	arbitrary	processes	communica4ng	together		
Ø Provide	illusion	that	all	processes	are	on	one	large	
computer	

Ø Can	deliver	data	reliably	to	any	process	running	on	any	
host	

Sept	20,	2017	 Sprenkle	-	CSCI325	 5	

Network

Data link

Physical

Transport

Op4on	1:	UDP	
• User	Datagram	Protocol	(UDP)	-	invented	in	1980	

Ø Simple	transport	layer	protocol	
• No	guarantees	about	reliability,	in-order	delivery	

Ø “Thin	veneer”	on	top	of	IP		
•  Adds	src/dest	port	numbers	
•  16-bit	port	number	allows	for	iden4fica4on	of	65536	
unique	communica4on	endpoints	per	host	

• Note	that	a	single	process	can	u4lize	mul4ple	ports	
•  IP	addr	+	port	number	uniquely	iden4fies	all	Internet	
endpoints	

Ø UDP	Datagram:	

Sept	20,	2017	 Sprenkle	-	CSCI325	 6	

Link-layer IP SrcPort DestPort Checksum Len Data…

UDP Header



9/20/17	

4	

Op4on	2:	TCP	
• Transmission	Control	Protocol	(TCP)	-	1974/1981	

Ø Reliable	in-order	delivery	of	byte	streams	
Ø Full	duplex	(endpoints	simultaneously	send/receive)	

•  Two-way	traffic	is	permiged	
•  Ex:	single	socket	for	web	browser	talking	to	web	server	

Ø Provides	flow-control	
•  Ensures	that	sender	does	not	overrun	receiver	
•  Fast	server	talking	to	slow	client	

Ø Provides	conges4on	control	
•  Keep	the	sender	from	overrunning	the	network	
• Many	simultaneous	connec4ons	across	routers	(cross	
traffic)	

Sept	20,	2017	 Sprenkle	-	CSCI325	 7	

TCP	Flow	&	Conges4on	Control	
• Sender	must	determine	maximum	amount	of	
data	in	transit	that	will	not	overrun	either	
receiver	or	network	

• Solu4ons?	

Sept	20,	2017	 Sprenkle	-	CSCI325	 8	

Data? 

Data? 

Data? 



9/20/17	

5	

Sending	Messages	

Sept	20,	2017	 Sprenkle	-	CSCI325	 9	

Message # x

ACK # x

Got it! 

TCP	Flow	Control	
• Sender	must	determine	maximum	amount	of	data	in	
transit	that	will	not	overrun	either	receiver	or	
network	(flow	and	conges4on	control)	

• Solu4ons	for	flow	control:	
Ø Maintain	“sliding	window”	to	track	data	in	transit	
Ø Size	of	window	determined	by	minimum	of	“flow	
window”	and	“conges4on	window”	

Ø Receiver	ACKs	“slide”	lel	side	of	window	forward	
• Opens	up	another	“slot”	at	right	side	of	window	for	
transmission	

	

Sept	20,	2017	 Sprenkle	-	CSCI325	 10	

DataDataDataDataDataDataDataDataDataDataDataDataDataData

Data in transit



9/20/17	

6	

TCP	“Sliding	Window”	Protocol	Issues	
• Need	for	connec4on	establishment	

Ø No	dedicated	cable	
• Varying	round	trip	4mes	over	life	of	connec4on	

Ø Different	paths,	different	levels	of	conges4on	
• Must	be	ready	for	very	old	packets	to	arrive	
• Delay-bandwidth	product	highly	variable	

Ø Amount	of	available	buffer	space	at	receivers	also	varies	
• Sender	has	no	idea	what	links	will	be	traversed	to	
receiver	in	advance	
Ø Must	dynamically	es4mate	changing	end-to-end	
characteris4cs	

Sept	20,	2017	 Sprenkle	-	CSCI325	 11	

TCP	Header	Format	

• Without	op4ons,	TCP	header	20	bytes	
•  IP	header	is	also	20	bytes	

Ø  Thus,	typical	Internet	packet	min	of	40	bytes	(+link	header)	
Sept	20,	2017	 Sprenkle	-	CSCI325	 12	

SrcPort DestPort

SequenceNum

Acknowledgment

HdrLen AdvertisedWindowFlags0

CheckSum UrgPtr

Options (variable)

Data

0 4 10 16 31



9/20/17	

7	

Establishing	a	TCP	Connec4on	
• Exchange	necessary	informa4on	to	begin	
communica4on	

• Three-way	handshake	
Ø E.g.,	server	listening	on	socket	

Sept	20,	2017	 Sprenkle	-	CSCI325	 13	

Client Server
SYN, sequence #=x

ACK, Acknowledgement=y+1

SYN+ACK, sequence #=y

Acknowledgment=x+1

TCP	Connec4on	Teardown	
• Each	side	of	a	TCP	connec4on	can	independently	
close	the	connec4on	
Ø Possible	to	have	a	half	duplex	connec4on	
Ø Possible	problems?	
Ø Solu4ons?	

• Closing	process	sends	a	FIN	message	
Ø Waits	for	ACK	of	FIN	to	come	back	
Ø This	side	of	the	connec4on	is	now	closed	

Sept	20,	2017	 Sprenkle	-	CSCI325	 14	



9/20/17	

8	

Reliability,	First	Cut:	Stop	and	Wait	
• Reliability,	two	principal	mechanisms:		

Ø ACKs	and	4meouts	

• Send	a	packet,	stop	and	wait	un4l	
acknowledgement	arrives	before	sending	next	
packet		

• Problems?	

Sept	20,	2017	 Sprenkle	-	CSCI325	 15	

Time Packet

ACK
T

im
eo

ut

Sender Receiver

Recovering	From	Error	

Sept	20,	2017	 Sprenkle	-	CSCI325	 16	

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

Packet

T
im

eo
ut

Packet

ACK

T
im

eo
ut

T
im

e

Packet

ACK

T
im

eo
ut

Packet

ACK

T
im

eo
ut

ACK lost Packet lost Early timeout/
Delayed ACK



9/20/17	

9	

Problems	with	Stop	and	Wait	
• How	to	recognize	a	duplicate	transmission?	

Ø Solu4on:	Put	sequence	number	in	packet	

• Performance	
Ø Unless	Latency-Bandwidth	product	is	very	small,		
sender	cannot	“fill	the	pipe”	

Ø Solu4on:	Sliding	window	protocol	with	dynamically	
changing	window	size	

Sept	20,	2017	 Sprenkle	-	CSCI325	 17	

Keeping	the	Pipe	Full	

•  Bandwidth-Delay	product	measures	network	capacity	
Ø How	much	data	can	you	put	into	the	network	before	the	first	

byte	reaches	receiver?	
•  Stop	and	Wait:	1	data	packet	per	RTT	(round	trip	4me)	

Ø  Compute	throughput	of	1.5-Mbps	link	with	45-ms	RTT	and	
1KByte	data	packet	

Ø With	Stop-and-wait:	182-Kbps	throughput	
•  1	Kbyte	=	1024x8	bits,	Throughput	=	8192	bits	/	45	ms	=	182	

Kbps	

Sept	20,	2017	 Sprenkle	-	CSCI325	 18	

Bandwidth

Latency

Ideally, send enough packets to fill the pipe 
before requiring first ACK packet



9/20/17	

10	

How	Do	We	Keep	the	Pipe	Full?	
•  Send	mul4ple	packets	without	wai4ng	for	
first	to	be	ACK’d	

•  Reliable,	unordered	delivery:	
Ø  Send	new	packet	aler	each	ACK	
Ø  Sender	keeps	list	of	unACK’d	packets;	

resends	aler	4meout	
•  Ideally,	first	ACK	arrives	immediately	aler	
pipe	is	filled	
Ø Opens	up	another	“slot”	

•  Example:	10	Mbps	link,	100	ms	RTT:	
Ø How	much	data	is	needed	to	keep	pipe	full?	

•  10x106bps	*	100x10-3s	=	1,000,000	bits	=	125	
KB	

Sept	20,	2017	 Sprenkle	-	CSCI325	 19	

Reliable,	In-Order	Delivery		
&	Flow	Control	
•  To	support	in-order	delivery,	add	sequence	number	

Ø  Receivers	buffer	later	packets	un4l	prior	packets	arrive	
Ø When	a	packet	arrives	out	of	order,	receiver	ACKs	largest	

sequence	#	received	in	order	
• What	happens	when	receiver	receives	1,	2,	3,	5,	6,	7?	
•  Receiver	ACKs	3	

•  Sender	must	s4ll	prevent	buffer	overflow	at	receiver	
Ø  Can’t	forget	about	flow	control	

•  Solu4on?	
Ø  Sliding	window	with	changing	window	size	
Ø  Circular	buffer	at	sender	and	receiver	

•  #	packets	in	transit	<=	buffer	size		
•  Advance	window	when	sender	and	receiver	agree	packets	at	

beginning	have	been	successfully	received	

Sept	20,	2017	 Sprenkle	-	CSCI325	 20	



9/20/17	

11	

TCP	Flow	Control	
• TCP	is	a	sliding	window	protocol	based	on	byte	
streams,	not	packets	
Ø For	window	size	n,	can	send	up	to	n	bytes	without	
receiving	an	acknowledgement		

Ø When	the	data	is	acknowledged,	window	slides	
forward	

• Each	packet	adver4ses	a	window	size	inside	TCP	
header	field	
Ø Number	indicates	number	of	bytes	the	receiver	is	
willing	to	buffer	

Sept	20,	2017	 Sprenkle	-	CSCI325	 21	

How	does	buffering	affect	
flow	control?	

• Buffering	happens	at	mul4ple	points	
Ø Only	finite	space	available	at	each	loca4on	
Ø System	will	eventually	block	(through	backpressure)	

Sept	20,	2017	 Sprenkle	-	CSCI325	 22	

Sending App

OS Buffer

NIC Buffer

Recv App

OS Buffer

NIC Buffer
Net�

Transmission



9/20/17	

12	

TCP	Flow	Control:	
Visualizing	the	Sliding	Window	

Sept	20,	2017	 Sprenkle	-	CSCI325	 23	

4 5 6 7 8 91 2 3 10 11 12

offered window = 6 bytes
(advertised by receiver)

usable window

sent and
acknowledged

sent, not ACKed

can send ASAP
can't send until
window moves

Left side of window advances when data is acknowledged.
Right side controlled by size of window advertisement.

Visualizing	the	Window:	Example	

Sept	20,	2017	 Sprenkle	-	CSCI325	 24	

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged

sent, not ACKed

can send ASAP
can't send until
window moves

Initial State, Receiver has 6 slots to buffer data
Bytes 4, 5, 6 sent, but not yet received

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can't recv until
window moves

Sender

Receiver



9/20/17	

13	

Visualizing	the	Window:	Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent, 
not ACKed

can send ASAP
can't send until
window moves

Receiver to Senderè ACK 5, Window 4

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can't recv until
window moves

Sender

Receiver

ACK’d, not read

Sept	20,	2017	 Sprenkle	-	CSCI325	 25	

Visualizing	the	Window:	Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and acknowledged

sent, not ACKed
can’t send until
window moves

Sender to Receiverè Send 7, 8, 9

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d, 
not read

Sept	20,	2017	 Sprenkle	-	CSCI325	 26	



9/20/17	

14	

Visualizing	the	Window:	Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and acknowledged
can’t send until
window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read can’t recv until
window moves

Sender

Receiver

ACK’d, not read

offered window=0

Receiver to Senderè ACK 9, Window 0

Sept	20,	2017	 Sprenkle	-	CSCI325	 27	

Visualizing	the	Window:	Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read

Sender

Receiver

ACK’d, not read

offered window=3

Available bufs

Receiver App reads packets 4, 5, 6
But sender has no way of knowing that more room is available!

Sept	20,	2017	 Sprenkle	-	CSCI325	 28	



9/20/17	

15	

Op4ons	for	Sender	Discovery	of	
Increased	Adver4sed	Window	
• Receiver	sends	duplicate	ACK	with	a	larger	
adver4sed	window	
Ø Complicates	receiver	design	
Ø TCP	design	philosophy:	keep	receiver	simple	

• Sender	periodically	transmits	a	1-byte	packet	
Ø If	no	space	available	at	receiverèpacket	dropped,	
no	ACK	

Ø If	addi4onal	space	became	availableèACK	contains	
new	adver4sed	window	

• NOTE:	Adver4sed	window	expressed	in	bytes	not	
packets!	

Sept	20,	2017	 Sprenkle	-	CSCI325	 29	

Looking	Ahead	
• Read	Lessons	from	Giant-Scale	Internet	Services	

Ø Annotate	on	Perusall	
• Web	Server	Project!	

Sept	20,	2017	 Sprenkle	-	CSCI325	 30	


