
9/22/17	

1	

Today’s	Objec3ves	
• TCP	Wrap	Up	
• Services:	Buzzword	Bingo	
• Threads	and	Synchroniza3on	

Sept	22,	2017	 1	Sprenkle	-	CSCI325	

Review	
• What	layer	is	TCP?	

Ø What	does	it	add	that	the	lower	level	does	not	have?	
Ø How	does	it	add	that	func3onality?	

Sept	22,	2017	 Sprenkle	-	CSCI325	 2	



9/22/17	

2	

TCP	Proper3es	
• Sequence	Numbers,	Acknowledgements	
Numbers	
Ø For	ordering	data	
Ø For	iden3fying	missing	data,	duplicate	data	

• Timeout	
Ø For	lost	data	

• Sliding	Window	
Ø For	flow	control,	conges3on	control	
Ø (not	just	8	packets)	

Sept	22,	2017	 Sprenkle	-	CSCI325	 3	

TCP	Flow	Control	
• TCP	is	a	sliding	window	protocol	based	on	byte	
streams,	not	packets	
Ø For	window	size	n,	can	send	up	to	n	bytes	without	
receiving	an	acknowledgement		

Ø When	the	data	is	acknowledged,	window	slides	
forward	

• Each	packet	adver3ses	a	window	size	inside	TCP	
header	field	
Ø Number	indicates	number	of	bytes	the	receiver	is	
willing	to	buffer	

Sept	22,	2017	 Sprenkle	-	CSCI325	 4	



9/22/17	

3	

SERVICES:	BUZZWORD	BINGO	

Sept	22,	2017	 Sprenkle	-	CSCI325	 5	

Perusall	
• What	works,	what	doesn’t?	

Sept	22,	2017	 Sprenkle	-	CSCI325	 6	



9/22/17	

4	

Buzzword	Bingo	
• Document	on	Box	

Sept	22,	2017	 Sprenkle	-	CSCI325	 7	

PROCESSES	AND	THREADS	

Sept	22,	2017	 Sprenkle	-	CSCI325	 8	



9/22/17	

5	

What	is	a	Process?	
• Process	–	a	sequen3al	program	execu3on	

•  Ideally,	we	would	like	our	OS	to	be	capable	of	
running	mul3ple	processes/jobs	at	once	
(i.e.,	mul&programming)	

• Challenge:	how	to	implement	&	ensure	efficient	
use	of	system	resources?	

Sept	22,	2017	 Sprenkle	-	CSCI325	 9	

Difference	between	a	process	and	a	program	

• Baking	analogy:	
Ø 	Recipe	=	Program	
Ø 	Baker	=	Processor	
Ø 	Ingredients	=	data	
Ø 	Baking	the	cake	=	Process	

Sept	22,	2017	 Sprenkle	-	CSCI325	 10	



9/22/17	

6	

Crea3ng	the	Illusion	of	Concurrency	
• Interleave	the	execu3on	of	exis3ng	processes	to	
maximize	processor	u3liza3on	
Ø Idea:	while	one	process	is	blocked	on	(slow)	I/O	
opera3ons,	allow	another	process	to	have	the	CPU	to	
make	progress	

• Provides	the	illusion	of	concurrency	on	a	one-
processor	system	

• Provide	reasonable	response	3mes	to	processes	

Sept	22,	2017	 Sprenkle	-	CSCI325	 11	

Threads	and	Processes:		
Execu3on	Environments	
•  Execu3on	environments	

Ø  address	space	(memory)	
Ø  thread	synchroniza3on	and	communica3on	resources	

(sockets)	
Ø  higher-level	resources	likes	open	files	

•  Each	process	has	its	own	separate	execu3on	environment	
•  Threads	share	a	single	execu3on	environment	

Sept	22,	2017	 Sprenkle	-	CSCI325	 12	

code data files 

registers stack 

code data files 

registers 
stack 

registers 
stack 

Process	
Main	
thread:	

MulAple	Threads	



9/22/17	

7	

Threads	vs	Processes	

Process	
•  Single	ac3vity	that	

processor	can	execute	
•  “Heavyweight”	
•  Independent	tasks	
•  Have	a	private	address	

space	
•  Only	interact	with	other	

processes	through	inter-
process	communica3on	

Thread	
•  “thread	of	execu3on”	
•  “Lightweight”	
•  Shares	state	informa3on	

with	other	threads	within	
a	single	process	
Ø  Every	process	has	a	

thread	
•  Easily	interact	with	other	

threads	b/c	memory	is	
shared	

Sept	22,	2017	 Sprenkle	-	CSCI325	 13	

If	this	were	an	OS	class,	would	discuss	threads	and	
processes	for	weeks	
•  Your	book	discusses	them	briefly	

Threads	vs.	Processes	
•  Benefits	of	using	threads	instead	of	processes	

Ø  Low	communica3on/context	switching	overhead	since	
execu3on	environment/address	space	is	shared	

Ø  Easy	to	take	advantage	of	parellelism	mul3-processor	
computers	

•  Disadvantages	of	threads	
Ø  Shared	resources	can	lead	to	synchroniza3on	problems	
Ø Need	to	be	careful	to	avoid	deadlocks	
Ø Need	to	provide	atomic	opera3ons	

Sept	22,	2017	 14	Sprenkle	-	CSCI325	



9/22/17	

8	

Synchronizing	Threads	
• Have	shared	data	

Ø What	helps	threads	be	lightweight	

• Threads	can	be	interrupted	by	the	OS	scheduler	
at	any	3me	

Sept	22,	2017	 Sprenkle	-	CSCI325	 15	

What challenges does this present?
How can we address these challenges?

Exploring	Issues	with	Shared	Data	
• Shared	Data:	an	array	list	(representa3on:	Deck	of	
Cards)	

• Discussion	
Ø What	are	the	opera3ons	we	can	do	to	the	array	list?	
Ø How	might	we	have	mul3ple	threads	interac3ng	with	the	
list?	
• What	would	the	code	look	like?	

Ø Assign	people	to	these	roles,	ac3ng	as	concurrent	
threads	
•  Play	out	different	scenarios:	how	could	the	threads	
interleave?		
Ø Consider	what	the	code	would	look	like	

Sept	22,	2017	 Sprenkle	-	CSCI325	 16	



9/22/17	

9	

Discussion	
• What	are	the	opera3ons	we	can	do	to	the	array	
list?	
Ø Top	card?,	Draw	card(s),	Shuffle,	Add	cards,	Cut	deck	

Sept	22,	2017	 Sprenkle	-	CSCI325	 17	

def addCard(self, card):
self.cards.append(card)

def removeCard(self, card):
self.cards.remove(card)

def topCard(self):
return self.cards.get(0)

def shuffle(self):
random.shuffle(self.cards)

…

Discussion	
• What	are	the	opera3ons	we	can	do	to	the	array	
list?	
Ø Top	card?,	Draw	card(s),	Shuffle,	Add	cards,	Cut	deck	

Sept	22,	2017	 Sprenkle	-	CSCI325	 18	

Thread1:	
•  deck.pop(0)
•  deck.pop(0)

Thread2:	
•  deck.get(0)
•  deck.pop(0)



9/22/17	

10	

Exploring	Issues	with	Shared	Data	
• Shared	Data:	an	array	list	(representa3on:	Deck	
of	Cards)	

• Discussion	
Ø What	are	the	problema3c	situa3ons?	
Ø What	causes	them?	
Ø How	can	you	prevent	problema3c	situa3ons?	

• Mo3vates	synchroniza3on	mechanisms	

Sept	22,	2017	 Sprenkle	-	CSCI325	 19	

Cri3cal	Sec3on	
• Sec3ons	of	code	that	have	to	happen	
uninterrupted	or	atomically	
Ø Only	one	thread	can	execute	at	a	3me	

Sept	22,	2017	 Sprenkle	-	CSCI325	 20	



9/22/17	

11	

Looking	Ahead	
• Web	Server	due	next	Friday	

Sept	22,	2017	 Sprenkle	-	CSCI325	 21	


