Today’s Objectives

Services

Sept 27, 2017 Sprenkle - CSCI325 1

Review

Compare and contrast threads and processes

What problem is caused by light-weight threads?
How do we solve that problem?

What are the benefits and challenges of network
services?

Sept 27, 2017 Sprenkle - CSCI325 2

9/27/17

9/27/17

Giant-Scale Services

Paper does not address

Service monitoring, configuration, QoS, security, logging, and
log analysis

Wide-area replicated services
Write-intensive services
Database management systems

Challenges for network services:
High availability
Critical in today’s Internet-dependent society
Each second of downtime = lots of lost money and revenue

Evolution
Growth

Sept 27, 2017 Sprenkle - CSCI325 3

Buzzword: Commodity Components

Defn: [relatively] cheap components, widely
available, interchangeable
“Off-the-shelf” components

Allow creation of [relatively] cheap clusters of
machines that work together

In contrast to specialty hardware, e.g.,
supercomputers

Sept 27, 2017 Sprenkle - CSCI325 4

Network Service Components

Client Client

Client Client

—

Load
manager 9

an
-

4

- o o> - o o >
) O) OO

5

Sept 27, 2017 Sprenkle - CSCI325

Clusters as Building Blocks

“ No alternative to clusters for building network
services that can scale to global use

© Cluster benefits:

» Incremental scalability

© Adding one machine typically linearly improves
performance

» Independent components
» Cost and performance

Sept 27, 2017 Sprenkle - CSCI325

9/27/17

9/27/17

Switch

Forward traffic to appropriate devices, typically
on the LAN
System Area Network (SAN)

still LAN
higher connectivity, performance

Layer 2 — Mac/Ethernet Address
Layer 3 —IP address
Backplane

On System Area Network
Direct client queries to appropriate server

Sept 27, 2017 Sprenkle - CSCI325 7

Buzzword Bingo

QoS: Quality of Service
DBMS: Database Management System

RAID: Redundant Array of Independent Disks
More later

Web Cache
Total seeks per second

Sept 27, 2017 Sprenkle - CSCI325 8

Load Management Discussion

What is load management?

What are some approaches to load management
and their benefits and limitations?

What do “L4” and “L7” refer to?
Violation of end to end argument?

Sept 27, 2017 Sprenkle - CSCI325 9

Layer 4 vs Layer 7 Routers

Distinction: to what information does the router
have access?

Sept 27, 2017 Sprenkle - CSCI325 10

9/27/17

Layer 4 vs Layer 7 Routers

Distinction: to what information does the router
have access?

Payload: data to be sent Applifation

Preser tation

Sesflion

Tranfport
How TCP views the message: [7c

Net\vvork

Dat1 link

Benefits of having the HTTP information?

Physical

Sept 27, 2017 Sprenkle - CSCI325 11

Load Management

Started with “round-robin” DNS in 1995

» Map hostname to multiple IP addresses, hand out particular
mapping in a round robin fashion to clients

» Does not hide failure or inactive servers
» Exposes structure of underlying service

L4 and L7 switches can inspect TCP session state or
HTTP session state

» Perform mapping of requests to backend servers based on
dynamically changing membership information

Sept 27, 2017 Sprenkle - CSCI325 12

9/27/17

Load Management Option 1:
Service Replication

Client Client

Client Client

Round-
robin DNS

Sept 27, 2017 Sprenkle - CSCI325

13

Load Management Option 2:
Service Partitioning

Program Program

Sept 27, 2017 Sprenkle - CSCI325

14

9/27/17

Case Study: Search

Map keyword to a set of documents containing that

word

» Optionally rank document set in decreasing relevance

E.g., PageRank from Google

Need a web crawler to build inverted index
» Data structure that maps keywords to list of all documents

that contains that word

Sept 27, 2017

Sprenkle - CSCI325

15

Inverted Index

Document 1

N

The bright blue
butterfly hangs
on the breeze.

Document 2

It's best to
forget the great
sky and to
retire from
every wind.

Document 3

.

Under blue
sky, in bright
sunlight, one
need not
search around.

Sept 27, 2017

Stopword list

Inverted index

] Term Document
— > [best | 2
:nd 2 blue 1.3
around 3 bright | 1.3
every 4 butterfly 1
for 5 or 3
from Lot l
in] forget 2
— 18
== 0 7 great | 2
not 8 hangs 1
on 9 need | 3
one
the 10 retire 2
to 1" search | 3
under
12 sky 2,3
— e s wind |

https://www.quora.com/What-is-inverted-index-It-is-a-well-known-fact-
that-you-need-to-build-indexes-to-implement-efficient-searches-What-is-
the-difference-between-index-and-inverted-index-and-how-does-one-build-

inverted-index
Sprenkle - CSCI325

16

9/27/17

Case Study: Search

Map keyword to a set of documents containing that
word

» Optionally rank document set in decreasing relevance
E.g., PageRank from Google

Need a web crawler to build inverted index

» Data structure that maps keywords to list of all documents
that contains that word

Multi-word search
» Perform join operation across individual inverted indices
Where to store individual inverted indices?

» Too much storage to place all on each machine (esp if also
need to have portions of document avail as well)

Sept 27, 2017 Sprenkle - CSCI325 17

Partitioning Keywords in Search

Think about keywords as columns and documents as rows
Vertical partitioning
» Split inverted index across multiple nodes (nodes=data storage devices)
» Each node contains as much of index as possible for a particular keyword
» Essentially like reducing the number of columns in table, and using extra
tables to store remaining columns
Horizontal partitioning
» Each node contains portion of inverted index for all keywords
» Have to visit every node in system to perform full join (or search)

» Essentially like splitting table up into multiple tables (with same number of
columns) by putting different (complete) rows in different tables

Sept 27, 2017 Sprenkle - CSCI325 18

9/27/17

Replication vs Partitioning?

What is replication?

What is partitioning?

What are their tradeoffs?
What should you use when?

Sept 27, 2017 Sprenkle - CSCI325 19

Replication versus Partitioning

Replication
» Any replica can serve any request
» Failure reduces system capacity but not data availability
» Must make sure replicas are kept in-sync
Partitioning
» Nodes are no longer identical so certain requests need to be
sent to individual nodes
» No need for coherence traffic for syncing data
» Failure reduces data availability and may reduce capacity

Optimal solution? Which is better?

Sept 27, 2017 Sprenkle - CSCI325 20

9/27/17

10

Availability Metrics Discussion

What are some availability metrics?
Which are the most important?
What should we do to improve availability?

Sept 27, 2017 Sprenkle - CSCI325 21

Availability Metrics

Uptime: fraction of time service is handling traffic
(usually measured in “nines”

Mean time between failures (MTBF)
Mean time to repair (MTTR)
Availability = (MTBF —=MTTR)/MTBF

Can improve availability by increasing MTBF or
by reducing MTTR

Ideally, systems never fail but easier to test
reduction in MTTR than improvement in MTBF

Sept 27, 2017 Sprenkle - CSCI325 22

9/27/17

11

Harvest and Yield

yield = queries completed/queries offered
In some sense more interesting than availability
because it focuses on client perceptions rather than
server perceptions
If a service fails when no one was accessing it...

harvest = data available/complete data
How much of the database is reflected in each
query?

Should faults affect yield, harvest, or both?

Sprenkle - CSCI325 23

Sept 27, 2017

DQ Principle

Data per query * Queries per second = constant

System’s overall capacity has a particular physical
bottleneck

Sept 27, 2017 Sprenkle - CSCI325 24

9/27/17

12

DQ Principle

Data per query * Queries per second = constant

System’s overall capacity has a particular physical
bottleneck

DQ is amount of data that has to be moved per
second on average

At high levels of utilization, can increase queries
per second by reducing the amount of input for
each response (reducing data per query)

Adding nodes or software optimizations changes
the constant

Sept 27, 2017 Sprenkle - CSCI325 25

Graceful Degradation Discussion

What is graceful degradation?
What are some approaches to GD?

Sept 27, 2017 Sprenkle - CSCI325 26

9/27/17

13

Graceful Degradation

Hard to avoid complete system saturation
Peak to average ratio of load for giant-scale systems
varies from 1.6:1 to 6:1
Single-event bursts can mean 1 to 3 orders of
magnitude increase in load (9/11/2001)
Power failures and natural disasters are not
independent, severely reducing capacity

How can we avoid correlated failures like this?
Under heavy load we can limit capacity (queries/sec) to

maintain harvest or sacrifice harvest to improve
capacity. Which is better?

Sept 27, 2017 Sprenkle - CSCI325 27

Graceful Degradation

Cost-based admission control
Search engine denies expensive query (in terms of D)
Rejecting one expensive query may allow multiple cheaper ones to
complete
Priority-based admission control
Stock trade requests given different priority relative to, e.g., stock quotes
Reduced data freshness

Reduce required data movement under load by allowing certain data to
become out of date (again stock quotes or perhaps book inventory)

Which technique do you prefer as an end user? as a system
maintainer?

Sept 27, 2017 Sprenkle - CSCI325 28

9/27/17

14

Online Evolution and Growth Discussion

What are the issues with online evolution and
growth?

What are some approaches? What are their
tradeoffs?

Sept 27, 2017 Sprenkle - CSCI325 29

Online Evolution and Growth

Internet services undergo rapid development with the
frequent release of new products and features

Rapid release means that software is released in
unstable state with known bugs

Goal: acceptable MTBF, low MTTR, no cascading failures
Beneficial to have staging area such that both new and
old system can coexist on a node simultaneously

Otherwise, will have to transfer new software after taking
down old software = increased MTTR

Also makes it easier to switch back to old version in case of
trouble

Sept 27, 2017 Sprenkle - CSCI325 30

9/27/17

15

Online Evolution and Growth =N

Fast reboot
» Simultaneously “reboot” all machines to new version
» Simple but guaranteed downtime
Rolling upgrade
» Upgrade one node at a time in “wave” moving across cluster

» 0Old and new versions must be compatible because they will
coexist (hard in practice)

Big flip
» Update one half at a time

» Remove one half of system from view of load balancing
switch

» Wait for existing connections to complete
Upgrade this half with new software
» Atomically flip load balancing switch to upgraded software

Y

Sept 27, 2017 Sprenkle - CSCI325 31

Looking Ahead
Web Server

Sept 27, 2017 Sprenkle - CSCI325 32

9/27/17

16

