
11/10/17	

1	

Today’s	Objec2ves	
• Distributed	File	Systems	
• Timing	

Nov	10,	2017	 1	Sprenkle	-	CSCI325	

Sakai	Poll	
• Which	class	would	you	prefer	to	use	for	the	
exam?	
Ø Wednesday	
Ø Friday	

• Answer	by	5:30	p.m.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 2	



11/10/17	

2	

Extra	Office	Hours	
• Today:	~2:45	–	4:30	p.m.	

Ø CSCI111	students	taking	exam	at	2:30	
• Get	priority	

Nov	10,	2017	 Sprenkle	-	CSCI325	 3	

Review	
• What	is	the	mo2va2on	for	a	distributed	file	
system	(DFS)?	

• What	does	it	mean	for	a	file	system	to	be	
distributed?	

• How	does	a	DFS	make	remote	files	look	the	same	
as	local	files?	

Nov	10,	2017	 Sprenkle	-	CSCI325	 4	



11/10/17	

3	

Distributed	File	System	Structure	

•  Perform	mount	opera2on	to	a_ach	remote	file	system	
into	local	namespace	
Ø  E.g.,	/home/students is	actually	a	file	on	remote	machine		
Ø  Maps	to	hydros.cs.wlu.edu:/exports/home/students

• Moun%ng	helps	to	combine	files/directories	in	different	
systems	and	form	a	single	file	system	structure	

/

csdept bin

ls

Nov	10,	2017	 Sprenkle	-	CSCI325	 5	

home

studentscourses

Mount points

DFS	Data	Access	

Check	
client	
cache	

Check	
local	disk	
(if	any)	

Send	request	to	
file	server	 Network	

Check	
server	
cache	

Issue	disk	
read	

Load	server	
cache	

Load	data	
to	client	cache	

Return	data	
to	client	

Client	request	to	
access	data	

Data	
not	present	

Data	
present	

Data	
not	present	

Data	
Not	present	

Data	
present	

Data	
present	

Nov	10,	2017	 Sprenkle	-	CSCI325	 6	



11/10/17	

4	

Wri2ng	Policy	

Sprenkle	-	CSCI325	 7	

When should a modified cache content be 
transferred to the server?
What are the tradeoffs?

Nov	10,	2017	

Client 

Server 

W

W

Client made 
changes to a file

Wri2ng	Policy	

•  Write-through	policy	
Ø  Immediate	wri2ng	at	server	when	cache	content	is	modified.	
Ø  Advantage:	reliability,	crash	of	cache	(client)	does	not	mean	loss	of	

data.	
Ø  Disadvantage:	Several	writes	for	each	small	change.	

•  Write-back	policy	
Ø  Write	at	the	server,	aeer	a	delay.	
Ø  Advantage:	small/frequent	changes	do	not	increase	network	traffic.	
Ø  Disadvantage:	less	reliable,	suscep2ble	to	client	crashes.	

•  Write	at	the	2me	of	file	closing	
Ø  Advantage:	even	less	network	traffic	
Ø  Disadvantage:	even	less	reliable,	more	suscep2ble	to	client	crashes.	

Sprenkle	-	CSCI325	 8	

When should a modified cache content be 
transferred to the server?

Nov	10,	2017	



11/10/17	

5	

Write-Back	vs	Write-Through	Caching	

Write-Through	 Write-Back	

Nov	10,	2017	 Sprenkle	-	CSCI325	 9	

Client 

Server 

W

W

Client 

Server 

W

W

Cache	Consistency	
When should a modified source content be 

transferred to the cache?�
What are the tradeoffs?

Nov	10,	2017	 Sprenkle	-	CSCI325	 10	

Client 

Server 

W

W’
Client 

W’

Op2ons	here?	



11/10/17	

6	

Cache	Consistency	

•  Server-ini2ated	policy:	
Ø  Server	cache	manager	informs	client	cache	managers	that	can	

then	retrieve	the	data.	
•  Client-ini2ated	policy:	

Ø  Client	cache	manager	checks	the	freshness	of	data	before	
delivering	to	users.	Overhead	for	every	data	access.	

•  Concurrent-write	sharing	policy:	
Ø Mul2ple	clients	open	the	file,	at	least	one	client	is	wri2ng.	
Ø  File	server	asks	other	clients	to	purge/remove	the	cached	

data	for	the	file,	to	maintain	consistency.	
•  …	

When should a modified source content be 
transferred to the cache?

Nov	10,	2017	 Sprenkle	-	CSCI325	 11	

Cache	Consistency	

• Sequen2al-write	sharing	policy:	a	client	opens	a	file	
that	was	recently	closed	aeer	wri2ng.	
Ø This	client	may	have	outdated	cache	blocks	of	the	file	

• Other	client	might	have	modified	the	file	contents	
• Use	2me	stamps	for	both	cache	and	files	
•  Compare	the	2me	stamps	to	know	the	freshness	of	blocks.	

Ø The	other	client	(which	was	wri2ng	previously)	may	s2ll	
have	modified	data	in	its	cache	that	has	not	yet	been	
updated	on	server	due	to	delayed	wri2ng.	
•  Server	can	force	the	previous	client	to	flush	its	cache	
whenever	a	new	client	opens	the	file.	

When should a modified source content be 
transferred to the cache?

Nov	10,	2017	 Sprenkle	-	CSCI325	 12	



11/10/17	

7	

Availability	
• Inten3on:	overcome	failure	of	servers	or	
network	links	

• Solu2ons?	
• Tradeoffs?	

Nov	10,	2017	 Sprenkle	-	CSCI325	 13	

Availability	
•  Inten3on:	overcome	failure	of	servers	or	network	
links	

• Solu2on:	replica2on,	i.e.,	maintain	copies	of	files	at	
different	servers.	

•  Issues:	
Ø Maintaining	consistency	
Ø Detec2ng	inconsistencies,	if	they	happen	despite	best	
efforts.	Possible	reasons	for	such	inconsistencies:	
•  Replica	is	not	updated	due	to	a	server	failure	or	a	broken	
network	link.	

•  Inconsistency	problems	and	their	recovery	may	
reduce	the	benefit	of	replica2on.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 14	



11/10/17	

8	

Availability:	Replica2on	Alterna2ves	
• Replica2on	unit:	a	file	

Ø Replicas	of	a	file	in	a	directory	may	be	handled	by	
different	servers,	requiring	extra	name	resolu2ons	to	
locate	the	replicas.		

• Replica2on	unit:	group	of	files	
Ø Advantage:	process	of	name	resolu2on,	etc.,	to	
locate	replicas	can	be	done	for	a	set	of	files	and	not	
for	individual	files.	

Ø Disadvantage:	wasteful	of	disk	space	if	only	very	few	
of	this	group	of	files	is	needed	by	users	oeen.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 15	

Replica	Management:	Two-Phase	
Commit	
•  Standard	protocol	for	making	commit	and	abort	atomic	
•  Use	a	persistent,	stable	log	on	each	machine	to	keep	track	of	

whether	commit	has	happened	
Ø  If	a	machine	crashes,	when	it	wakes	up,	it	checks	its	log	to	recover	

state	of	world	at	2me	of	crash	
•  Prepare	Phase:	

Ø  Global		coordinator	requests	that	all	par2cipants	will	promise	to	
commit	or	rollback	the	transac2on	

Ø  Par2cipants	record	promise	in	log,	then	acknowledge	
Ø  If	anyone	votes	to	abort,	coordinator	writes	“Abort”	in	its	log	and	

tells	everyone	to	abort;	each	records	“Abort”	in	log	
•  Commit	Phase:	

Ø  Aeer	all	par2cipants	respond	that	they	are	prepared,	then	the	
coordinator	writes	“Commit”	to	its	log	
•  Then	asks	all	nodes	to	commit;	they	respond	with	ack	
•  Aeer	receive	acks,	coordinator	writes	“Got	Commit”	to	log	

Nov	10,	2017	 Sprenkle	-	CSCI325	 16	



11/10/17	

9	

Case	1:	Commit	

Coordinator Participant 

Request-to-Prepare

Prepared

Commit

Done

Case	2:	Abort	

Coordinator 

Request-to-Prepare

No

Abort

Done

Participant 



11/10/17	

10	

Replica	Management:	Other	Schemes	
• Weighted	votes:	

Ø A	certain	number	of	votes	r	or	w	is	to	be	obtained	
before	reading	or	wri2ng.	

• Current	synchroniza2on	site	(CSS):	
Ø Designate	a	process/site	to	control	the	
modifica2ons.	

Ø File	open/close	are	done	through	CSS.	
Ø CSS	can	become	a	bo_leneck.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 19	

Scalability	
• Goal:	Ease	of	adding	more	servers	and	clients	
with	respect	to	the	problems/design	issues	
discussed	before,	such	as	caching,	replica2on	
management,	etc.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 20	



11/10/17	

11	

Scalability	
•  Goal:	Ease	of	adding	more	servers	and	clients	with	respect	
to	the	problems	/	design	issues	discussed	before	such	as	
caching,	replica2on	management,	etc.	

•  Server-ini2ated	cache	invalida2on	scales	up	be_er	
•  Using	the	client’s	cache:	

Ø A	server	serves	only	X	clients.	
Ø New	clients	(aeer	the	first	X)	are	informed	of	the	X	clients	

from	whom	they	can	get	the	data	(sort	of	chaining/hierarchy).		
Ø  Cache	misses	&	invalida2ons	are	propagated	up	and	down	

this	hierarchy,	i.e.,	each	node	serves	as	a	mini-file	server	for	
its	children.		

•  Structure	of	a	server:	
Ø  I/O	opera2ons	through	threads	(light	weight	processes)	can	

help	in	handling	more	clients.	

Nov	10,	2017	 Sprenkle	-	CSCI325	 21	

Building	a	Distributed	File	System	
• Debate	in	late	1980’s,	early	1990’s:	

Ø Stateless	vs.	stateful	file	server	
• Sun	NFS:	stateless	server	

Ø Only	store	contents	of	files	+	soe	state	(for	performance)	
Ø Crash	recovery	simple	opera2on	
Ø All	RPC’s	idempotent	(no	state)	

•  “At	least	once”	RPC	seman2cs	sufficient	
Ø Server	unaware	of	users	accessing	files	

• Clients	have	to	check	with	server	periodically	for	the	
uncommon	case	
Ø When	directory/file	has	been	modified	

Nov	10,	2017	 Sprenkle	-	CSCI325	 22	



11/10/17	

12	

Sun	NFS	
• Sun	Microsystem’s	Network	File	System	

Ø Widely	adopted	in	industry	and	academia	since	1985	
Ø (we	use	it)	

• All	NFS	implementa2ons	support	NFS	protocol	
Ø Currently	on	version	4	
Ø Protocol	is	a	set	of	RPCs	that	provide	mechanisms	for	
clients	to	perform	opera2ons	on	remote	files	

Ø OS-independent	but	originally	designed	for	UNIX	

Nov	10,	2017	 Sprenkle	-	CSCI325	 23	

File	Service	Architecture	
•  Separate	main	concerns	in	providing	access	to	files	by	
structuring	file	service	as	three	components:	

•  NFS	roughly	follows	this	model	
Nov	10,	2017	 Sprenkle	-	CSCI325	 24	

Flat file service Implement operations on contents of files;  
uses Unique File Identifiers (UFID) 

Directory service 
Provides mapping between text names for 
files and their UFIDs; Used by clients to 
create, modify, manipulate directories 

Client module  
Runs in each computer, integrates and 
extends flat file service (using RPC) and 
directory service operations using API that 
user-level programs can use 



11/10/17	

13	

NFS	Architecture	

• Client-server	design	
• Server	module	resides	in	kernel	on	each	NFS	server	
• Client	modules	translate	requests	for	remote	files	
and	are	passed	to	server	module	at	computer	
holding	the	relevant	file	system	

• Clients	and	servers	communicate	using	Sun’s	RPC	
system	

Nov	10,	2017	 Sprenkle	-	CSCI325	 25	

Client 
Applications 

Client Module 

Server 
Directory Service 
Flat File Service 

RPC 

NFS	Protocol	
• Network	protocol	
• Layered	above	TCP/IP	

Ø NSF	4:	requires	TCP	as	a	transport	
Ø Original	implementa2ons	(2	&	3)	use	UDP	datagram	
transport	for	low	overhead	
• Maximum	IP	datagram	size	was	increased	to	match	FS	
block	size,	to	allow	send/receive	of	en2re	file	blocks	

• A	set	of	message	formats	and	types	
Ø Client	issues	a	request	message	for	a	service	opera2on	
Ø Server	performs	requested	opera2on	and	returns	a	reply	
message	with	status	and	(perhaps)	requested	data	

Nov	10,	2017	 Sprenkle	-	CSCI325	 26	



11/10/17	

14	

NFS	protocol	architecture	
•  I/O	RPCs	are	idempotent	

Ø mul2ple	repe22ons	have	same	effect	as	one	
Ø lookup(handle,	“emacs”)	generally	returns	same	
result	

Ø read(file-handle,	offset,	length)	⇒	bytes	
Ø write(file-handle,	offset,	buffer,	bytes)	

• RPCs	do	not	create	server-memory	state	
Ø no	RPC	calls	for	open()/close()	
Ø write()	succeeds	(to	disk)	or	fails	before	RPC		
completes	

VFS:	The	File	System	Switch	
•  In	1985	Sun	introduced	virtual	file	system	
interface	to	accommodate	diverse	file	system	
types	cleanly	
Ø Allows	diverse	file	systems	to	coexist	

• No	effect	on	the	system	call	interface	

Nov	10,	2017	 Sprenkle	-	CSCI325	 28	



11/10/17	

15	

Network	File	System	(NFS)	

Nov	10,	2017	 Sprenkle	-	CSCI325	 29	

VFS=Virtual	File	System	

VFS:	Vnodes	
• Every	file	or	directory	in	ac2ve	use	is	represented	
by	a	virtual	node	or	vnode	object	in	memory		
Ø Each	file	system	maintains	a	cache	of	its	vnodes	
Ø Each	vnode	has	a	standard	file	a_ribute	struct	
Ø Each	standard	struct	points	at	file-system-specific	file	
a_ribute	struct	

Nov	10,	2017	 Sprenkle	-	CSCI325	 30	

Standard	Struct	
FS-specific	Struct	



11/10/17	

16	

NFS	file	handles	
• Goals	

Ø Reasonable	size	
Ø Quickly	map	to	file	on	server	
Ø “Capability”	

• Hard	to	forge,	so	possession	serves	as	“proof”	
•  Implementa2on	(inode	#,	inode	genera2on	#)	

Ø inode	#	-	small,	fast	for	server	to	map	onto	data	
Ø “inode	genera2on	#”	-	must	match	value	stored	in	
inode	
• “unguessably	random”	number	chosen	in	create()	

Pathname	Traversal	
• When	a	pathname	is	passed	as	an	argument	to	a	
system	call,	syscall	layer	“converts”	it	to	a	vnode	

• Pathname	traversal	is	a	sequence	of	lookup	calls	
to	descend	the	file	tree	to	the	named	file	

•  Issues:	
Ø Crossing	mount	points	
Ø Finding	root	vnode	
Ø Locking	
Ø Caching	name->vnode	transla2ons	

Nov	10,	2017	 Sprenkle	-	CSCI325	 32	



11/10/17	

17	

Network	File	System	(NFS)	

Nov	10,	2017	 Sprenkle	-	CSCI325	 33	

NFS	Data	Access	Model	

Application

read “/project/file”

Vnode

RPC

NFS

RPC

NFS Local FS

buf=x

Vnode

C
lie

nt
 k

er
ne

l Server kernel

Local disk

read “/local/a/file”

Nov	10,	2017	 Sprenkle	-	CSCI325	 34	



11/10/17	

18	

Two	Op2ons	for	NFS	Lookup/Read	

Nov	10,	2017	 Sprenkle	-	CSCI325	 35	

NFSv3 NFSv4

Stateless	NFS	
• NFS	server	maintains	no	in-memory	hard	state	

Ø Only	hard	state	is	stable	file	system	image	on	disk	
Ø No	record	of	clients	or	open	files	
Ø No	implicit	arguments	to	requests	(no	server-
maintained	file	offsets)	

Ø No	write-back	caching	on	server	
Ø No	record	of	recently	processed	requests	

• Why?		Simple	recovery!	

Nov	10,	2017	 Sprenkle	-	CSCI325	 36	



11/10/17	

19	

Recovery	in	NFS	
•  If	server	fails	and	restarts,	no	need	to	rebuild	in-
state	memory	state	on	server	
Ø Client	reestablishes	contact	
Ø Client	retransmits	pending	requests	

• Classical	NFS	uses	UDP	
Ø Server	failure	is	transparent	to	client	since	there	is	
no	“connec2on”	

Ø Sun	RPC	masks	network	errors	by	retransmiyng	
requests	aeer	an	adap2ve	2meout	
• Dropped	packets	are	indis2nguishable	from	crashed	
server	to	client	

Nov	10,	2017	 Sprenkle	-	CSCI325	 37	

NFS	Server	Caching	
•  Cache	read	results,	writes,	directory	opera2ons	
• Write-through	cache	vs.	write-back	cache?	

Ø Write	through:	Each	update	wri_en	to	disk	immediately	
Ø When	write	opera2on	returns,	client	is	guaranteed	stable	

update		

•  Pros:	
Ø  Stateless	(easy	to	implement),	no	data	lost	on	crash	

•  Cons:	
Ø  Slow:	client	must	wait	for	disk	write	

Nov	10,	2017	 Sprenkle	-	CSCI325	 38	



11/10/17	

20	

Drawbacks	
• Stateless	nature	has	obvious	advantages	but	also	
some	drawbacks	
Ø Recovery	by	retransmission	constrains	server	
interface		
• “Execute	mostly	once”	seman2cs	=	send	and	pray	
• Execu2ons	usually	only	happen	once,	but	not	
guaranteed	

Ø Update	opera2ons	are	disk-limited	(write-through	
cache)	

Ø Server	cannot	help	in	client	cache	consistency	

Nov	10,	2017	 Sprenkle	-	CSCI325	 39	

NFS	Client	Caching	
• Clients	cache	read,	writes,	and	directory	ops	

Ø What	if	mul2ple	people	upda2ng	the	same	file	at	the	
same	2me?		Consistency	problems!	

• NFS	approach:	
Ø Server	maintains	last	modifica2on	2me/per	file	
Ø Client	remembers	2me	it	ini2ally	retrieved	data	
Ø On	file	access,	client	checks	2mestamp	against	server	
(every	3-30	seconds)	
• Unnecessary	2mestamp	checking	
• How	long	to	set	the	2meout?		What	is	the	tradeoff?	

Nov	10,	2017	 Sprenkle	-	CSCI325	 40	



11/10/17	

21	

NFS	Replica2on 
•  As	originally	specified,	NFS	did	not	support	data	
replica2on	

• More	recent	versions	of	NFS	support	replica2on	via	a	
mechanism	called	Automounter	
Ø Allows	remote	mount	points	to	be	specified	using	a	set	of	

servers	
Ø Manually	propagate	modifica2ons	to	replicas		

•  Intended	primarily	for	READ-ONLY	files	

Nov	10,	2017	 Sprenkle	-	CSCI325	 41	

NFS	Security	
•  NFS	uses	underlying	Unix	file	protec2on	on	servers	for	
access	checks	

•  In	early	NFS,	mutual	trust	assumed	among	all	
par2cipa2ng	machines	
Ø User	iden2ty	determined	by	client	machine	and	accepted	

without	further	server	valida2on	
•  Kerberos:	computer	network	authen2ca2on	protocol	

Ø Allows	nodes	communica2ng	over	non-secure	network	to	
prove	their	iden2ty	to	one	another	securely	

Ø  Port	88	
•  File	data	in	RPC	packets	is	not	encryptedèNFS	is	s2ll	
vulnerable	

Nov	10,	2017	 Sprenkle	-	CSCI325	 42	



11/10/17	

22	

Access	Control	
• Users	have	various	rights	w.r.t.	a	file	

Ø Read,	write,	update,	create	and	delete	
• Systems	can	restrict	these	rights	to	par2cular	
users	or	groups	of	users	

• Some	permissions	can	be	given	to	all	users	
• These	rights	can	be	compared	to	access	control	
lists	when	a	file	is	accessed	

• Abstract	discussion	
Ø Different	ways	to	implement	access	control	

Nov	10,	2017	 Sprenkle	-	CSCI325	 43	

NFS	“rough	edges”	
• Locking	

Ø Inherently	stateful	
•  lock	must	persist	across	client	calls	

Ø lock(),	read(),	write(),	unlock()	
Ø “Separate	service”	

• Handled	by	same	server	
• Horrible	things	happen	on	server	crash	
• Horrible	things	happen	on	client	crash	



11/10/17	

23	

NFS	“rough	edges”	
• Some	opera2ons	not	really	idempotent	

Ø unlink(file)	returns	“ok”	once,	then	“no	such	file”	
Ø server	caches	“a	few”	client	requests	

• Caching	
Ø No	real	consistency	guarantees	
Ø Clients	typically	cache	a_ributes,	data	“for	a	while”	
Ø No	way	to	know	when	they're	wrong	

NFS	“rough	edges”	
• Large	NFS	installa2ons	are	bri_le	

Ø Everybody	must	agree	on	many	mount	points	
Ø Hard	to	load-balance	files	among	servers	

• No	volumes	
• No	atomic	moves	

• Cross-realm	NFS	access	basically	nonexistent	
Ø No	good	way	to	map	uid#47	from	an	unknown	host	



11/10/17	

24	

Looking	Ahead	
• Monday	

Ø Inverted	Index	Project	due	
Ø Timing/Coordina2on	

• Wed	–	Fri:	Exam	

Nov	10,	2017	 Sprenkle	-	CSCI325	 47	


