
11/27/17	

1	

Today’s	Objec2ves	
• Wrap	up	Timing	
• Coordina2on	
• Consensus	

Nov	15,	2017	 1	Sprenkle	-	CSCI325	

Review	
• What	is	NTP?	

Ø What	is	the	mo2va2on?	
Ø Describe	its	design	
Ø What	are	the	benefits?	

Nov	15,	2017	 Sprenkle	-	CSCI325	 2	

11/27/17	

2	

Review:	NTP	Clock	Strata	
•  Stratum	0:	atomic	clocks,	GPS	clocks,	

radio	clocks	w/	UTC	
•  Stratum	1:	Time	servers	(primary),	

aUached	directly	to	Stratum	0	
devices	

•  Stratum	2:	Send	requests	to	one	or	
more	Stratum	1	2me	servers	

•  Stratum	3:	Send	requests	to	one	or	
more	Stratum	2	computers	

•  And	so	on…	
•  Up	to	256(!)	strata	levels	supported	

in	current	version	of	NTP	

Nov	15,	2017	 Sprenkle	-	CSCI325	 3	

Most accurate

https://en.wikipedia.org/wiki/
Network_Time_Protocol#/media/
File:Network_Time_Protocol_servers_and_clients.svg

Lowest leaf: �
users’ workstations
Reconfigurable in �

response to failures

Synchronizing	Servers	
•  All	messages	sent	using	UDP	
•  Each	message	bears	2mestamps	of	recent	events:	

Ø  Local	2mes	of	Send	and	Receive	of	previous	message	
Ø  Local	2mes	of	Send	of	current	message	

•  Recipient	notes	the	2me	of	receipt	Ti		
Ø Have	Ti-3,	Ti-2,	Ti-1,	Ti	

Nov	15,	2017	 Sprenkle	-	CSCI325	 4	

Ti

Ti-1T i-2

Ti- 3

Server B

Server A

Time

m m'

Time

11/27/17	

3	

Review:	Logical	Clocks	
• What	is	the	mo2va2on	for	logical	clocks?	

Nov	15,	2017	 Sprenkle	-	CSCI325	 5	

Logical	Time	and	Logical	Clocks	
• Instead	of	synchronizing	clocks,	event	ordering	can	be	used	
• Rules:	

1.  If	two	events	occurred	at	the	same	process	pi	(i	=	1,	2,	…	N)	then	they	
occurred	in	the	order	observed	by	pi,	that	is	→ι 	

2.  When	a	message	m	is	sent	between	two	processes,	send(m)	happened	
before	receive(m)	

3.  The	happened-before	rela2on	is	transi2ve	

Nov	15,	2017	 Sprenkle	-	CSCI325	 6	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

11/27/17	

4	

Happened	Before	Rela2on	
• What	do	we	know	about	events	a,	b,	c,	d,	f?	

Ø  Rule	1:	a	→	b	(at	p1),	c	→	d	(at	p2)	
Ø  Rule	2:	b	→ c	(by	m1),	d	→ f	(by	of	m2)	
Ø  Rule	3:	a	→	b	→	c	→	d	→	f	=	a	→	f		

• What	do	we	know	about	a	and	e?	
Ø No	rela2on	à	they	are	concurrent:	a	||	e	

Nov	15,	2017	 Sprenkle	-	CSCI325	 7	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport’s	Logical	Clocks	
• A	logical	clock	is	a	monotonically	
increasing	soeware	counter	
Ø Need	not	relate	to	a	physical	clock	

Nov	15,	2017	 Sprenkle	-	CSCI325	 8	

Leslie Lamport

11/27/17	

5	

Lamport’s	Logical	Clocks	
•  Each	process	pi	has	a	logical	clock,	Li		

Ø  Can	be	used	to	apply	logical	7mestamps	to	events	using	rules:	
•  LC1:	Li		is	incremented	by	1	before	each	event	at	process	pi,	Li	=	Li	+	1	
•  LC2:		

a)  when	process	pi	sends	message	m,	it	piggybacks	on	m	the	value	t	=		Li		
b)  when	pj	receives	(m,t)	it	sets	Lj	:=	max(Lj,	t)	and	applies	LC1	before	

2mestamping	the	event	receive	(m)	

Nov	15,	2017	 Sprenkle	-	CSCI325	 9	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport’s	Logical	Clocks	
•  Each	of	p1,	p2,	p3	has	its	logical	clock	ini2alized	to	zero		
•  The	clock	values	on	events	are	those	immediately	a?er	the	event	

Ø  e.g.,	1	for	a,	2	for	b.		
•  For	m1,	t	=	2	is	piggybacked	and	c	gets	L2	=	max(0,2)+1	=	3		
•  Note	that	e	→ e’	implies	L(e)	<	L(e’)	
•  Does	L(e)	<	L(e')	imply	e	→ e’	?	

Ø  No!	The	converse	is	not	true:	L(e)	<	L(e')	does	not	imply	e	→ e’	
Ø  Example:	L(e)	<	L(b)	but	b	||	e	

Nov	15,	2017	 Sprenkle	-	CSCI325	 10	

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

11/27/17	

6	

Lamport	Clocks	à	Vector	Clocks	
•  Limita2on	of	Lamport	clocks:	

Ø  L(e)	<	L(e’)	does	not	imply	e	happened	before	e’	
Ø  If	L(e)	<	L(e’),	we	want	to	know	for	sure	that	e	happened	

before	e’	
•  How	can	we	overcome	the	limita2on?	
•  Solu2on:	Vector	clocks	

Ø Vector	2mestamps	(rather	than	a	single	number)	are	used	to	
2mestamp	local	events	

Ø  Vector	clock	Vi[i]	is	the	number	of	events	that	pi	has	
2mestamped	

Ø  Vi[j]	(j	≠	i)	is	the	number	of	events	at	pj	that	pi	has	been	
affected	by	

•  Vector	clocks	are	used	in	many	schemes	for	replica2on	
of	data	to	ensure	consistency	

Nov	15,	2017	 Sprenkle	-	CSCI325	 11	

Vector	Clocks	
•  Vector	clock	Vi	at	process	pi	is	an	array	of	N	integers	
•  Rules	for	determining	vector	clocks:	

Ø  VC1:		Ini2ally	Vi[j]	=	0	for	i,	j	=	1,	2,	…N	
Ø  VC2:		Before	pi	2mestamps	an	event,	it	sets	Vi[i]	=	Vi[i]	+1	
Ø  VC3:		pi	piggybacks	t	=	Vi	on	every	message	it	sends	
Ø  VC4:		Merge:	When	pi	receives	(m,t)	it	sets	Vi[j]	:=	max(Vi[j]	,	t[j])	j	=	1,	2,	…

N	

Nov	15,	2017	 Sprenkle	-	CSCI325	 12	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

11/27/17	

7	

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector	Clocks	
•  At	p1:	a(1,0,0),	b(2,0,0),	piggyback	(2,0,0)	on	m1	
•  At	p2:	On	receipt	of	m1	get	max	((0,0,0),	(2,0,0))	=	(2,0,0),	and	add	1	to	own	

element	in	clock	=	(2,1,0)	for	event	c	
•  At	p3:	On	receipt	of	m2	get	max	((0,0,1),	(2,2,0))	=	(2,2,1)	and	add	1	to	own	

element	in	clock	
•  Vector	2mestamp	opera2ons:	=,	<=,	max,	etc.	

Ø  Compare	elements	pairwise	
•  Note	that	e	→ e’	s2ll	implies	L(e)	<	L(e’)		
•  And	now	the	converse	is	also	true	(L(e)	<	L(e’)	implies	e	→ e’)	
•  Can	you	see	a	pair	of	parallel	events?	

Ø  c	||	e	because	neither	V(c)	<=	V(e)	nor	V(e)	<=	V(c)	

Nov	15,	2017	 Sprenkle	-	CSCI325	 13	

Summary:		
Time	and	Clocks	in	Distributed	Systems		
•  Accurate	2mekeeping	is	important	for	distributed	systems	
•  Algorithms	(e.g.,	Cris2an’s	and	NTP)	synchronize	clocks	in	spite	of	

their	drie	and	the	variability	of	message	delays	
•  For	ordering	an	arbitrary	pair	of	events	at	different	computers,	

clock	synchroniza2on	is	not	always	prac2cal		
•  The	happened-before	rela7on	is	a	par2al	order	on	events	that	

reflects	a	flow	of	informa2on	between	them	
•  Lamport	clocks	are	counters	that	are	updated	according	to	

happened-before	rela2onship	between	events	
•  Vector	clocks	are	an	improvement	on	Lamport	clocks	

Ø  By	comparing	vector	2mestamps,	can	tell	whether	two	events	are	ordered	
by	happened-before	or	are	concurrent	

Ø  Applied	in	schemes		for	replica2on	of	data,	e.g.	Gossip,	Coda	
Nov	15,	2017	 Sprenkle	-	CSCI325	 14	

11/27/17	

8	

COORDINATION	

Nov	15,	2017	 Sprenkle	-	CSCI325	 15	

Coordina2on	
• Distributed	processes	oeen	need	to	coordinate	
their	ac2vi2es	

•  If	the	processes	share	a	resource	or	collec2on	of	
resources,	then	mutual	exclusion	is	required	to	
ensure	consistency	
Ø Oeen	called	the	cri)cal	sec)on	problem	
Ø Discussed	in	detail	in	OS	courses	

•  In	this	class,	we	need	distributed	mutual	
exclusion	
Ø Mutual	exclusion	based	solely	on	message	passing		

Nov	15,	2017	 Sprenkle	-	CSCI325	 16	

11/27/17	

9	

Mutual	Exclusion	Algorithms	
•  Assump2ons	

Ø N	processes	share	a	resource	in	a	single	cri2cal	sec2on	
Ø Asynchronous	systems	
Ø  Processes	do	not	fail	
Ø Message	delivery	is	reliable	

•  Requirements	
Ø  Safety:	At	most	one	process	may	execute	in	cri2cal	sec2on	

(CS)	at	a	2me	
Ø  Liveness:	Requests	to	enter	and	exit	CS	eventually	succeed	
Ø Happens-before	Ordering:	If	one	request	to	enter	CS	

happened-before	another,	entry	is	granted	in	order	

Nov	15,	2017	 Sprenkle	-	CSCI325	 17	

Central	Server	Approach	
•  All	processes	contact	central	server	to	obtain	
permission	to	enter	cri2cal	sec2on	(CS)	

Nov	15,	2017	 Sprenkle	-	CSCI325	 18	

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

Pros and Cons?

11/27/17	

10	

Central	Server	Approach	
•  All	processes	contact	central	server	to	obtain	
permission	to	enter	cri2cal	sec2on	(CS)	

•  Pros:	Simple	to	implement	
•  Cons:	Can	be	slow	(2me	to	transmit	release	and	grant	
messages);	central	server	is	boUleneck	

Nov	15,	2017	 Sprenkle	-	CSCI325	 19	

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

Ring-Based	Approach	
•  Arrange	processes	in	logical	ring	
•  Each	process	has	communica2on	channel	to	the	next	process		
•  Pass	“token”	around	ring;	token	grants	access	to	CS	

Nov	15,	2017	 Sprenkle	-	CSCI325	 20	

p
n

p
2

p
3

p
4

Token

p
1

Pros and Cons?

11/27/17	

11	

Ring-Based	Approach	
•  Arrange	processes	in	logical	ring	
•  Each	process	has	communica2on	channel	to	the	next	process		
•  Pass	“token”	around	ring;	token	grants	access	to	CS	
•  Pros:	Simple,	no	central	boUleneck	
•  Cons:	Poten2ally	large	delay;	wastes	bandwidth	

Nov	15,	2017	 Sprenkle	-	CSCI325	 21	

p
n

p
2

p
3

p
4

Token

p
1

Mul2cast	&	Logical	Clocks	
•  Ricart	and	Agrawala	developed	approach	based	on	
mul2cast	and	Lamport	clocks	

• Mul2cast	request	for	access	to	other	processes;	wait	for	
reply	

•  Logical	2mestamps	make	sure	happened-before	
requirement	is	met	

Nov	15,	2017	 Sprenkle	-	CSCI325	 22	

p
3

34

Reply

34

41

41

34

p
1

p
2

Reply

41

Reply

Pros and Cons?

11/27/17	

12	

Mul2cast	&	Logical	Clocks	
•  Ricart	and	Agrawala	developed	approach	based	on	
mul2cast	and	Lamport	clocks	

• Mul2cast	request	for	access	to	other	processes;	wait	for	
reply	

•  Logical	2mestamps	make	sure	happened-before	
requirement	is	met	

	

•  Pros:	Short	delay	(compared	to	ring)	
•  Cons:	Consumes	lots	of	bandwidth	

Nov	15,	2017	 Sprenkle	-	CSCI325	 23	

p
3

34

Reply

34

41

41

34

p
1

p
2

Reply

41

Reply

Vo2ng	Algorithm	
•  Not	necessary	for	all	processes	to	grant	access,	only	
need	subset	of	all	processes	
Ø  Each	process	maintains	a	“vo2ng	set”	
Ø All	vo2ng	sets	are	the	same	size	

• Make	sure	subsets	used	by	any	two	processes	overlap	
Ø  For	all	vo2ng	sets,	Vi	∩	Vj	≠	∅	

•  Pros:	Requires	less	bandwidth	than	previous	approach	
•  Cons:	determining	op2mal	vo2ng	sets;	can	cause	
deadlock!	

Nov	15,	2017	 Sprenkle	-	CSCI325	 24	

11/27/17	

13	

Ques2ons	
• What	about	fault	tolerance?	

• What	happens	when	messages	are	lost?	
• What	happens	when	a	process	crashes?	

Nov	15,	2017	 Sprenkle	-	CSCI325	 25	

CONSENSUS	

Nov	15,	2017	 Sprenkle	-	CSCI325	 26	

11/27/17	

14	

Agreement	

• …even	in	the	presence	of	faults!	

• Oeen	referred	to	as	the	consensus	problem	

Nov	15,	2017	 Sprenkle	-	CSCI325	 27	

Goal: get processes to agree on some value
after one or more processes propose that value

Consensus	
•  Every	process	begins	in	an	undecided	state	and	
proposes	a	value	

•  Processes	communicate,	deciding	which	value	to	accept	
Ø One	op2on:	majority	rules	

•  Requirements:	
Ø  TerminaFon	-	Eventually	each	process	sets	its	decision	

variable	
Ø Agreement	-	The	decision	value	of	each	process	is	the	same	
Ø  Integrity	-	If	the	correct	processes	all	proposed	the	same	

value,	then	any	correct	process	in	decided	state	has	chosen	
that	value	

Nov	15,	2017	 Sprenkle	-	CSCI325	 28	

11/27/17	

15	

Consensus	

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

Nov	15,	2017	 Sprenkle	-	CSCI325	 29	

v = value
d = decision

Byzan2ne	Generals	Problem	
•  Problem	ini2ally	proposed	by	Lamport	in	1982	
•  Three	or	more	generals	(N)	agree	to	aUack	or	retreat	
•  Commander	issues	the	order	
•  Others	(N-1)	must	decide	to	aUack	or	retreat		

Ø  Slightly	different	than	normal	consensus	since	there	is	a	
“dis2nguished	process”	deciding	ini2al	value	

•  One	or	more	general	may	be	“treacherous”	or	faulty	(f)	
Ø He	lies!		He	says	“aUack”	to	one	general	and	“retreat”	to	

another	
Ø Why	lie?	Think	about	security	protocols	

•  How	does	each	general	decide	what	to	do?	
•  Assume	a	synchronous	system	

Nov	15,	2017	 Sprenkle	-	CSCI325	 30	

11/27/17	

16	

Byzan2ne	Generals	Requirements	
•  Termina2on	

Ø  Each	“correct”	process	must	eventually	make	a	decision	

•  Agreement	
Ø  The	decision	value	of	all	correct	processes	must	be	the	same	

•  Integrity	
Ø  If	the	commander	isn’t	faulty	(not	always	true!),	the	other	

correct	processes	should	decide	on	commander’s	value	(and	
follow	it)	

Nov	15,	2017	 Sprenkle	-	CSCI325	 31	

Three	Byzan2ne	Generals	

p 1 (Commander)

p 2 p 3

1:v 1:v
2:1:v

3:1:u

p 1 (Commander)

p 2 p 3

1:x 1:w

2:1:w

3:1:x
Faulty processes are shaded

“3 says 1 says u”

The goal is for p2 to determine
that p1 says v.

But p2 doesn’t have enough info!

p2 once again has conflicting info.
Can’t distinguish between faulty

p3 and faulty commander!

Nov	15,	2017	 Sprenkle	-	CSCI325	 32	

Since we can’t distinguish between these two
scenarios, no solution exists!

11/27/17	

17	

Byzan2ne	Generals	
• No	solu2on	exists	if	N	≤	3f,	where	f	is	the	number	
of	treacherous	(faulty)	generals				

• But	if	N	≥	3f	+	1,	a	solu2on	exists!	

• Consider	N=4	generals,	f=1	
Ø 3f	+	1	=	4	≥	N	

• No	solu2on	exists	in	asynchronous	systems	for	all	
N	and	f	

Nov	15,	2017	 Sprenkle	-	CSCI325	 33	

Four	Byzan2ne	Generals	

•  Within	two	rounds,	non-faulty	generals	reach	consensus	
Ø  which	may	mean	“take	no	ac2on”	

p 1

(Commander)

p 2 p 3

1:v 1:v
2:1:v

3:1:u

p 4

1:v

4:1:v
2:1:v 3:1:w

4:1:v

p 1

(Commander)

p 2 p 3

1:w 1:u
2:1:u

3:1:w

p 4

1:v

4:1:v
2:1:u 3:1:w

4:1:v

p2 and p4 should correctly
determine that “1 says v.”

Using simple “majority rules”
consensus, this works!

p2, p3, and p4 all receive u, v, w.
Thus they know that the

commander is faulty, and reach
“no action” consensus.

Nov	15,	2017	 Sprenkle	-	CSCI325	 34	

11/27/17	

18	

Four	Byzan2ne	Generals	

• What	now?	
Ø  They’d	all	pick	u!	
Ø  But	this	commander	isn’t	really	truly	faulty	

•  Faulty	processes	ALWAYS	lie	and	don’t	propose	a	majority	of	
anything	

p 1

(Commander)

p 2 p 3

1:w 1:u
2:1:u

3:1:w

p 4

1:u

4:1:u
2:1:u 3:1:w

4:1:u

u, u, v u, u, w

u, u, w

Nov	15,	2017	 Sprenkle	-	CSCI325	 35	

Marzullo’s	Algorithm	
•  NTP	servers	filter	pairs	<oi,	di>,	es2ma2ng	reliability	from	

varia2on,	allowing	selec2on	of	“good”	peers		
•  NTP	servers	use	a	varia2on	of	an	algorithm	developed	by	Keith	

Marzullo	to	choose	a	2me	value	given	a	bunch	of	varying	samples	

Nov	15,	2017	 Sprenkle	-	CSCI325	 36	

11/27/17	

19	

Another	Varia2on	of	Byzan2ne	Generals	

•  Byzan2ne	Agreement	
Ø Here	p2,	p3,	and	p4	reach	an	agreement	on	their	respec2ve	

values,	which	is	all	that	maUers	since	p1	is	faulty	

Nov	15,	2017	 Sprenkle	-	CSCI325	 37	

Round 1: Send value to all other processes
 1 Got (1, 2, 3, 4)
 2 Got (u, 2, 3, 4)
 3 Got (w, 2, 3, 4)
 4 Got (x, 2, 3, 4)
Round 2: Exchange vectors
 2 Got 3 Got 4 Got
 (a, b, c, d) (e, f, g, h) (i, j, k, l)
 (w, 2, 3, 4) (u, 2, 3, 4) (u, 2, 3,
4)
 (x, 2, 3, 4) (x, 2, 3, 4) (w, 2, 3, 4)

p 1

p 2 p 3

w u
2

3

p 4

x

4
2 3 4

2 3
4

Looking	Ahead	
•  Inverted	Index	Team	Evalua2on	
• Exam	-	Due	Friday	
• Final	Project	Proposal	

Ø One-page	paper	
Ø Due	Monday	aeer	Thanksgiving	Break	
Ø Check	in	with	me	beforehand	if	you’re	not	sure	if	
your	project	will	fit	in.	

Nov	15,	2017	 Sprenkle	-	CSCI325	 38	

