
11/27/17	

1	

Today’s	Objec2ves	
• Kerberos	
• Peer	To	Peer	
• Overlay	Networks	
• Final	Projects	

Nov	27,	2017	 Sprenkle	-	CSCI325	 1	

Kerberos	
•  Trusted	third	party,	runs	by	default	on	port	88	
•  Security	objects:		

Ø  Ticket:	token,	verifying	sender	has	been	authen2cated	by	
Kerberos	
•  Expiry	2me	(~several	hours),	session	key	

Ø Authen2cator:	token	constructed	by	client	to	prove	iden2ty	
of	user	
•  Only	used	once	
•  Contains	client’s	name	and	2mestamp	and	encrypted	in	session	

key	
Ø  Session	key:	secret	key	randomly	generated	

•  Issued	to	client	for	communica2ng	with	par2cular	server	
•  Used	for	encryp2ng	communica2on	with	servers	and	

authen2cators	
•  Client	must	have	2cket	&	session	key	for	each	server	

Nov	27,	2017	 Sprenkle	-	CSCI325	 2	



11/27/17	

2	

NFS	with	Kerberos	

•  Server	does	not	maintain	info	at	process	level	
•  Requires	only	one	user	logged	in	to	each	client	computer	

Nov	27,	2017	 Sprenkle	-	CSCI325	 3	

Client	 Server	

Mount File Systems, �
Kerberos authentication 
data

Keep authentication info: �
user’s id, client address

File access

Verify user id, address

PEER	TO	PEER	SYSTEMS	

Nov	27,	2017	 Sprenkle	-	CSCI325	 4	



11/27/17	

3	

Peer-to-Peer	Network	
•  A	distributed	network	architecture	composed	of	
par2cipants	that	make	a	por2on	of	their	resources	directly	
available	to	network	par2cipants	without	the	need	for	
central	coordina4on	
Ø  Resources:	processing	power,	disk	storage	or	network	

bandwidth	
•  Used	largely	for	sharing	of	content	files	

Ø  audio,	video,	data	or	anything	in	a	digital	format	
•  There	are	many	p2p	protocols	

Ø Ares,	Bi]orrent,	or	eDonkey.	
•  Can	be	very	large	
•  Can	also	be	used	for	business	solu2ons	for	rela2vely	small	
companies	that	may	not	have	resources	available	to	
implement	a	server	solu2on.	

Nov	27,	2017	 Sprenkle	-	CSCI325	 5	
Slide content based on Clayton Sullivan 

Internet	Protocol	Trends,	1993-2006	

Nov	27,	2017	 Sprenkle	-	CSCI325	 6	



11/27/17	

4	

Propor2on	of	US	Internet	Traffic	

Nov	27,	2017	 Sprenkle	-	CSCI325	 7	

Sources: Cisco estimates based on CAIDA publications 
Andrew Odlyzko https://www.wired.com/2010/08/ff_webrip/

A	Peer	
• Peers	are	both	suppliers	and	consumers	
•  In	tradi2onal	client-server	model,	server	supplies	
while	client	only	consumes.		

Nov	27,	2017	 Sprenkle	-	CSCI325	 8	



11/27/17	

5	

Peer-To-Peer	vs	Client-Server	

Nov	27,	2017	 Sprenkle	-	CSCI325	 9	

Network	Architecture	
• Typically	ad-hoc	networks	

Ø adding	and	removing	nodes	have	no	significant	
impact	on	the	network	

• Allows	peer-to-peer	systems	to	provide	
enhanced	scalability	and	service	robustness	

• Ocen,	implemented	as	an	applica2on	layer	
overlay	network	that	is	placed	on	top	of	na2ve	
or	physical	network	
Ø Used	for	peer	discovery	and	indexing	

Nov	27,	2017	 Sprenkle	-	CSCI325	 10	



11/27/17	

6	

Advantages	
• The	more	nodes	that	are	part	of	the	system,	
demand	increases	and	total	capacity	of	the	
system	also	increases	
Ø In	client-server	network	architectures	as	more	clients	
are	added	to	the	system,	the	system	resources	
decreases.	

• There	is	no	single	point	of	failure,	due	to	
robustness	of	the	system.	

• All	clients	provide	to	the	system	

	 Nov	27,	2017	 Sprenkle	-	CSCI325	 11	

Disadvantages	
• Security	is	a	major	concern,	not	all	shared	files	
are	from	benign	sources.	A]ackers	may	add	
malware	to	p2p	files	as	an	a]empt	to	take	
control	of	other	nodes	in	the	network.	

• Heavy	bandwidth	usage	
• An2-P2P	companies	have	introduced	faked	
chunks	into	shared	files	that	rendered	shared	
files	useless	upon	comple2on	of	the	download.	

•  ISP	thro]ling	of	P2P	traffic	
• Poten2al	legal/moral	concerns	

Nov	27,	2017	 Sprenkle	-	CSCI325	 12	



11/27/17	

7	

P2P	as	Overlay	Networking		
• P2P	applica2ons	need	to:		

Ø track	iden22es	&	IP	addresses	of	peers		
• May	be	many	and	may	have	significant	churn	

Ø Route	messages	among	peers		
•  If	you	don’t	keep	track	of	all	peers,	this	is	“mul2-hop”		

• Overlay	network		
Ø Peers	doing	both	naming	and	rou2ng		
Ø IP	becomes	“just”	the	low-level	transport		

Nov	27,	2017	 Sprenkle	-	CSCI325	 13	

Overlay	Network	
•  A	network	built	on	top	of	one	or	more	exis2ng	networks	

Ø A	virtual	network	of	nodes	and	logical	links		
•  Built	on	top	of	an	exis2ng	network	
•  Adds	an	addi2onal	layer	of	indirec2on/virtualiza2on	
•  Changes	proper2es	in	one	or	more	areas	of	underlying	
network	

•  Purpose:	implement	a	network	service	that	is	not	
available	in	the	exis2ng	network	

Nov	27,	2017	 Sprenkle	-	CSCI325	 14	

overlay
network

I logical hop
2 physical



11/27/17	

8	

Applica2on	Overlay	Network	
•  P2P	applica2ons	like	

BitTorrent	create	overlay	
networks	over	exis2ng	
internet	to	perform	
indexing	and	peer	
collec2on	func2ons	

•  Overlay	networks	have	no	
control	over	physical	
networks	or	have	any	
informa2on	on	physical	
networks	

•  Weak	resource	
coordina2on,	as	well	as	
weak	response	to	fairness	
of	resource	sharing	

Nov	27,	2017	 Sprenkle	-	CSCI325	 15	

Structured	vs.	Unstructured	
•  Structured	

Ø  Connec2ons	in	the	overlay	are	fixed	
Ø  DHT	Indexing	

•  Unstructured	
Ø  No	algorithm	for	organiza2on	or	op2miza2on	
Ø  Connec2ons	in	the	overlay	are	created	arbitrarily	
Ø  Centralized	

•  Central	server	is	used	for	indexing	func2ons	
•  BitTorrent	

Ø  Hybrid	
•  Two	groups	of	clients:	client	and	overlay	
•  eMule,	Kazaa	

Ø  Pure	
•  Equipotent	peers,	all	peers	have	equal	amount	of	power	
•  Gnutella,	Freenet	

Nov	27,	2017	 Sprenkle	-	CSCI325	 16	



11/27/17	

9	

DISTRIBUTED	HASH	TABLES	

Nov	27,	2017	 Sprenkle	-	CSCI325	 17	

•  Challenge: How to find data in a distributed file 
sharing system?

Lookup is the key problem!

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

Introduc2on	to	DHTs	

Nov	27,	2017	 Sprenkle	-	CSCI325	 18	
Slide content based on material from Daniel Figueiredo and Robert Morris



11/27/17	

10	

Review:	Possible	solu2ons	
• Centralized	(example?)	

• Distributed	

Nov	27,	2017	 Sprenkle	-	CSCI325	 19	

•  Requires O(N) state
•  Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Centralized	Solu2on:	Napster	

Nov	27,	2017	 Sprenkle	-	CSCI325	 20	



11/27/17	

11	

•  Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Gnutella, Morpheus, etc.

Distributed	Solu2on:	Flooding	

Nov	27,	2017	 Sprenkle	-	CSCI325	 21	

Freenet, Tapestry, Chord, CAN, etc.

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Distributed	Solu2on:	Routed	Messages	

Nov	27,	2017	 Sprenkle	-	CSCI325	 22	



11/27/17	

12	

Rou2ng	Challenges	
• Define	a	useful	key	nearness	metric	
• Keep	the	hop	count	small	
• Keep	the	rou2ng	tables	“right	size”	
• Stay	robust	despite	rapid	changes	in	membership	

Nov	27,	2017	 Sprenkle	-	CSCI325	 23	

Structured	DHT	
•  Employ	globally	consistent	protocol	to	ensure	that	any	node	can	efficiently	

route	a	search	to	some	peer	that	has	a	desired	file.	
Ø  Guarantee	à	more	structured	pa]ern	of	overlay	links	

•  DHT	is	a	lookup	service	
Ø  allows	any	par2cipa2ng	node	to	efficiently	retrieve	the	value	associated	with	a	

given	key	whether	the	file	is	new	or	older/rarer.	
•  Maintaining	the	mappings	from	keys	to	values	is	handled	by	nodes	that	any	

change	in	the	number	of	par2cipants	causes	minimal	amount	of	disrup2on	
•  Allows	for	con2nual	node	arrival	and	departure,	fault	tolerant	

Nov	27,	2017	 Sprenkle	-	CSCI325	 24	



11/27/17	

13	

Chord	Discussion	
•  Chord:	emphasizes	efficiency	and	simplicity	

•  Provides	peer-to-peer	hash	lookup	service:	
Ø  Lookup(key)	→	IP	address	
Ø Note:	Chord	does	not	store	the	data	

•  How	does	Chord	locate	a	node?	
•  How	does	Chord	maintain	rou2ng	tables?		

Nov	27,	2017	 Sprenkle	-	CSCI325	 25	

Chord	Proper2es	
• Efficient:	O(log(N))	messages	per	lookup	

Ø N	is	the	total	number	of	servers/peers	

• Scalable:	O(log(N))	state	per	node	
• Robust:	survives	massive	failures	

• Proofs	are	in	2001	paper		
Ø Assume	no	malicious	par2cipants	

Nov	27,	2017	 Sprenkle	-	CSCI325	 26	



11/27/17	

14	

Chord	IDs	
• m	bit	iden2fier	space	for	both	keys	and	nodes	
• Key	iden2fier	=	SHA-1(key)	

• Node	iden2fier	=	SHA-1(IP	address)	

• Both	are	uniformly	distributed	and	exist	in	same	
ID	space	

Nov	27,	2017	 Sprenkle	-	CSCI325	 27	

Key=“LetItBe” ID=60SHA-1

IP=“137.165.10.100” ID=123SHA-1

How map key IDs to node IDs? 

Consistent	Hashing	[Karger97]	
•  Given	a	set	of	n	nodes,	a	consistent	hash	func2on	will	
map	keys	(e.g.,	filenames)	uniformly	across	the	nodes	

•  Feature	of	consistent	hashing	for	node	addi2on:	
Ø Only	1/n	keys	must	be	reassigned	to	new	nodes	

•  Only	to	new	node	

Nov	27,	2017	 Sprenkle	-	CSCI325	 28	



11/27/17	

15	

N32

N90

N123 K20

K5

Circular m-bit
ID space

0IP=“137.165.10.100”

K101

K60
Key=“LetItBe”

Consistent	Hashing	

• Key	is	stored	at	its	successor:		
node	with	next	higher	ID	

Nov	27,	2017	 Sprenkle	-	CSCI325	 29	

N32

N90

N123

0

Hash(“LetItBe”) = K60N10

N55

Where is “LetItBe”? 

“N
90

 h
as

 K
60

”

K60

Consistent	Hashing	
•  Every	node	must	know	about	every	other	node	

Ø  requires	global	informa2on!	
•  Rou2ng	tables	are	large	O(N)	
•  But…lookups	are	fast	O(1)	

Nov	27,	2017	 Sprenkle	-	CSCI325	 30	



11/27/17	

16	

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”? 

“N90 has K60”

K60

 Every node knows its successor in the ring

This works but 
requires O(N) time

Chord:	Basic	Lookup	

Nov	27,	2017	 Sprenkle	-	CSCI325	 31	

N80
80 + 20

N116

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger	Tables”	
• Every	node	knows	up	to	m	other	nodes	in	the	ring	
•  Increase	distance	exponen2ally	
• m=7	in	this	example	
	

Nov	27,	2017	 Sprenkle	-	CSCI325	 32	



11/27/17	

17	

N116

N80
80 + 20

N112

N98

N18

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

“Finger	Tables”	
•  	Finger	i	points	to	successor	of	n+2i	

Ø 	ith	entry	in	n’s	finger	table	has	ID	>	(n+2i)	%	2m	

Nov	27,	2017	 Sprenkle	-	CSCI325	 33	

N80+1 N98

N80+2 N98

N80+4 N98

N80+8 N98

N80+16 N98

N80+32 N116

N80+64 N18

 Lookups take O(log N) hops

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

Lookups	are	Faster	

Nov	27,	2017	 Sprenkle	-	CSCI325	 34	



11/27/17	

18	

Chord	Discussion	
• How	does	Chord	cope	with	changes	in	
membership?	

Nov	27,	2017	 Sprenkle	-	CSCI325	 35	

Joining	the	Ring	
• Three	step	process:	

1.  Ini2alize	all	fingers	of	new	node	
2.  Update	fingers	of	exis2ng	nodes	
3.  Transfer	keys	from	successor	to	new	node	

• Less	aggressive	mechanism	(lazy	finger	update):	
1.  Ini2alize	only	finger	to	successor	node	
2.  Periodically	verify	immediate	successor,	

predecessor	
3.  Periodically	refresh	finger	table	entries	

Nov	27,	2017	 Sprenkle	-	CSCI325	 36	



11/27/17	

19	

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Joining	the	Ring	-	Step	1	
•  Ini2alize	new	node	finger	table	

Ø Locate	any	node	p	in	the	ring	
Ø Ask	node	p	to	lookup	fingers	of	new	node	N36	
Ø Return	results	to	new	node	

Nov	27,	2017	 Sprenkle	-	CSCI325	 37	

N36

N60

N40

N5

N20
N99

N80

Joining	the	Ring	-	Step	2	
•  Update	fingers	of	exis2ng	nodes	

Ø New	node	calls	update	func2on	on	exis2ng	nodes	
Ø  Exis2ng	nodes	can	recursively	update	fingers	of	other	nodes	
Ø N36	sets	successor	pointer	to	be	N40	
Ø N20	sets	successor	pointer	to	be	N36	

	

Nov	27,	2017	 Sprenkle	-	CSCI325	 38	



11/27/17	

20	

Copy keys 21..36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Joining	the	Ring	-	Step	3	
• Transfer	keys	from	successor	node	to	new	node	

Ø Only	keys	in	the	range	are	transferred		

Nov	27,	2017	 Sprenkle	-	CSCI325	 39	

 When a node leaves ring, all keys are copied to successor

Failure of nodes might cause incorrect lookup

N120

N113

N102

N80

N85

N10

Lookup(90)

N80 doesn’t know correct successor, so lookup fails

Handing	Failures	

Nov	27,	2017	 Sprenkle	-	CSCI325	 40	



11/27/17	

21	

Chord	Discussion	
• How	does	Chord	handle	failures?	

Nov	27,	2017	 Sprenkle	-	CSCI325	 41	

Handing	Failures	
• Use	successor	list	

Ø Each	node	knows	r	immediate	successors	
Ø Acer	failure,	will	know	first	live	successor	
Ø Correct	successors	guarantee	correct	lookups	

• Guarantee	is	with	some	probability	
Ø Can	choose	r	to	make	probability	of	lookup	failure	
arbitrarily	small	

	

Nov	27,	2017	 Sprenkle	-	CSCI325	 42	



11/27/17	

22	

Chord	Discussion	
• How	did	the	authors	evaluate	Chord?	
• What	were	the	major	results?	

Nov	27,	2017	 Sprenkle	-	CSCI325	 43	

Evalua2on	Overview	
• Quick	lookup	in	large	systems	
• Low	varia2on	in	lookup	costs	
• Robust	despite	massive	failure	

• Experiments	confirm	theore2cal	results	

Nov	27,	2017	 Sprenkle	-	CSCI325	 44	



11/27/17	

23	

Cost is O(log N), as predicted by theory

•  Constant is 1/2

Number of Nodes

A
ve

ra
ge

 M
es

sa
ge

s 
pe

r 
Lo

ok
up

Cost	of	Lookup	

Nov	27,	2017	 Sprenkle	-	CSCI325	 45	

•  Start with 1000 peers
•  Insert 1000 key/value pairs (and replicate each 5 times)
•  Stop X% of peers
•  Perform 1000 lookups

Robustness	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Failed Nodes (Percent)

Fa
ile

d 
Lo

ok
up

s 
(P

er
ce

nt
)

Nov	27,	2017	 Sprenkle	-	CSCI325	 46	Massive failures have little impact!



11/27/17	

24	

Effec2veness	of	Load	Balancing	

Nov	27,	2017	 Sprenkle	-	CSCI325	 47	

Path	Length	of	Lookup	

Pa
th
	le
ng
th
	

100000	

Nov	27,	2017	 Sprenkle	-	CSCI325	 48	



11/27/17	

25	

Distribu2on	of	Path	Length	
(4096	nodes)	

Nov	27,	2017	 Sprenkle	-	CSCI325	 49	

Discussion	
•  Any	of	your	ques2ons?	

Ø What	are	typical	issues	we	need	to	think	about?	
Ø How	do	they	fit	into	Chord?	

•  Locality	with	respect	to	the	underlying	network?	
Ø  From	SD,	first	lookup	goes	to	Australia,	second	to	Europe,	

third	to	Asia	

•  Even	O(log	n)	steps	too	many	for	rou2ng	in	large	
networks?	

•  Single	popular	key	mapping	to	a	single	node?	
• What	about	search?	
•  How	does	replica2on	fit	into	the	picture?	

Nov	27,	2017	 Sprenkle	-	CSCI325	 50	



11/27/17	

26	

Unstructured	
• Overlay	links	are	established	arbitrarily	
• When	a	peer	wants	to	find	the	file,	the	request	must	
be	flooded	through	network	to	find	as	many	peers	
as	possible	that	share	the	data.		

• This	flooding	creates	a	large	amount	of	signal	traffic.		
• No	guarantee	that	file	will	be	found	especially	when	
the	file	is	older	or	rare	

• Very	poor	search	efficiency	
• Most	popular	p2p	networks	are	unstructured	
networks	

Nov	27,	2017	 Sprenkle	-	CSCI325	 51	

BitTorrent	
• One	of	many	forms	of	p2p	protocols	for	file-sharing.	
• Created	in	2001	
• Es2mated	to	account	for	43%	of	all	Internet	traffic	
• Many	clients	that	work	on	bi]orrent	protocol	

Ø Utorrent,	Vuze,	BitTorrent	
• Most	are	of	the	Unstructured	p2p		network	
architecture	
Ø Centralized	

•  tracker	
Ø Most	clients	have	started	to	implement	DHT	func2ons	

Nov	27,	2017	 Sprenkle	-	CSCI325	 52	



11/27/17	

27	

Nov	27,	2017	 Sprenkle	-	CSCI325	 53	

BitTorrent	
•  Creates	an	applica2on	overlay	network	over	exis2ng	
internet	infrastructure	

•  Peers	when	trying	to	download	file,	make	request	to	the	
network	and	a]empt	to	get	the	most	possible	peers	
connected	to	download	file	
Ø  Resources	are	not	op2mized	and	fairness	is	a	concern	

•  Clients	have	started	to	implement	DHT	as	a	be]er	way	to	
connect	to	peers	in	order	to	download	files	more	
efficiently.		

• When	new	files	are	added	to	the,	small	data	requests	are	
carried	out	over	TCP	connec2ons	to	different	machines	in	
order	to	share	the	load	of	ini2al	file	sharer.	

•  Trackers	assist	in	the	communica2on	between	peers	
•  DHT	would	remove	need	for	trackers	

Nov	27,	2017	 Sprenkle	-	CSCI325	 54	



11/27/17	

28	

OVERLAY	NETWORKS	

Nov	27,	2017	 Sprenkle	-	CSCI325	 55	

Overlay	Network:	Example	

• The	Internet	
Ø Goal:	connect	local	area	networks	
Ø Built	on	local	area	networks	(e.g.,	Ethernet),	phone	
lines	

Ø Add	an	Internet	Protocol	header	to	all	packets	

Nov	27,	2017	 Sprenkle	-	CSCI325	 56	



11/27/17	

29	

Another	Example:	Skype	
• From	Kazaa	
• Voice	over	IP	service	
• Peer-to-peer	infrastructure	

Ø Hosts:	ordinary	users’	
machines	

Ø Super	nodes:	ordinary	users’	
machines	with	enhanced	
roles	

Nov	27,	2017	 Sprenkle	-	CSCI325	 57	

SN

SN

SN

P

P P

P P

P

P P

P PP

P P

P P

Skype �
Login Server

Skype	
• No	IP	address	or	port	is	required	to	establish	call	
• Users	authen2cated	by	well-known	login	server	
• Then,	connect	to	super	node	
• Global	index	of	users	is	distributed	across	super	
nodes	
Ø Needs	to	be	searched	for	other	users	
Ø Super	node	ini2ates	search	on	~8	super	nodes	
Ø Takes	between	~3-4	seconds	

• Establishes	connec2on	using	TCP	
• UDP	or	TCP	for	streaming	
• Encoding	and	decoding	à	excellent	call	quality	

Nov	27,	2017	 Sprenkle	-	CSCI325	 58	



11/27/17	

30	

Final	Project	
• Proposal	due	today	
• GitHub	repository	

Nov	27,	2017	 Sprenkle	-	CSCI325	 59	


