Today

® Structs Q

Streams Files DominoE,
® Csummar Cats Unlimited k
Y Wednesday, - CUUGHT

B0 CLKITTERSD
® Make September 23 SSEREE >
Yes, you can, Happy Cat!
Between 10:30 a.m. and closing on Wed, Sept 23,
mention Cats Unlimited when placing your order
and 15% of your purchase will benefit
cat spay/neuter programs in the Rockbridge area.
Lexington Domino’s
25S. Jefferson St
Phone: 540-463-7375
Cats Unlimited is an all-volunteer 501(c)(3) that offers

low-cost spay/neuter assistance to prevent unwanted kittens
http://catsunlimited.org/

:

Sept 23,2015

Figuring out sizes: sizeof ()

® sizeof() applied to an array returns the total size

® Be careful of implicit array/pointer conversions
#include <stdio.h>

int function(int x[1) {

\ L what is passed to
return (int) sizeof(x);

function() is a
pointer, not the
int main(Q) { whole array

int a[20];

printf("sizeof(int) = %d; sizeof(a) = %d\n"
sizeof(int), sizeof(a));

printf("function returns %d\n", function(a));
} sizeof(int) = 4; sizeof(a) = 80
function returns 8

Sept 23, 2015

sizeof is an operator

® Not a function
a ha! That’s why we couldn’t replicate behavior of
sizeof as a function
® \When called from the same scope where an
array was created, sizeof knows of array’s size
® When you pass the array as a parameter, array’s
size information is lost.

Only a reference to the array position in memory is
received by the function

Reference is treated as a pointer
sizeof returns the pointer's size

Figuring out sizes: sizeof ()

® sizeof() applied to an array returns the total size

® Be careful of implicit array/pointer conversions
#include <stdio.h>

int function(int x[1) {

\ L what is passed to
return (int) sizeof(x);

function() is a
pointer, not the
int main() { whole array

int a[20];

printf("sizeof(int) = %d; sizeof(a) = %d\n"
sizeof(int), sizeof(a));

printf("function returns %d\n", function(a));
} sizeof(int) = 4; sizeof(a) = 80
function returns 8

Sept 23, 2015

Sept 23, 2015 Sprenkle - CSCI330 3
Sept 23, 2015 Sprenkle - CSCI330 5

Structs

® Astructis

an aggregate data structure (i.e., a collection of
data)

can contain components (“fields”) of different types
Whereas arrays contain elements of the same type
fields are accessed by name
Whereas array elements are accessed by index position
® Unlike Java classes, a struct can only contain
data, not code — like a class with only fields

Sept 23, 2015 Sprenkle - CSCI330

Declaring structs

® A node for a linked list of integers:
struct node
struct node { val
int val; next
struct node *next;

3

optional “structure tag”
refers to the structure

Accessing structure fields

® Given a struct s ® Given a pointer p to a
containing a field f, struct s containing a
to access f we write field f, to access f we
s.f write
Example: p->f //equt. to: (*p).f
struct foo { Example:
int count, bar[10]; struct foo {
Vi int count, bar[10];
}*p, *a;

x.count = y.bar[3];

declares x, y to be p->count = g->bar[3];

variables of type

“struct foo”
Sept 23, 2015 Spremkle=CSCI330 8

Input and output

® Data is read from and written to 1/O streams
® 3 predefined streams:
stdin: “standard input” - usually, keyboard input
stdout: “standard output” - usually, the screen

stderr: “standard error” - for error messages
(usually, the screen)

Other streams can be created using system calls (e.g.,
to read or write a specific file)

Sept 23, 2015 Sprenkle - CSCI330 7
STREAMS
Sept 23, 2015 Sprenkle - CSCI330 9
Streams

-f;,
network o 8 &

keyboar_
monitor

hard dis

program

include <stdio.h>
lude <ete 1b.m>

fnteger from stain.
ot read an integer

TR0 - reus
stdout « 7¥'che geoer read
«—

stderr
-

e

Status 1= 1) { // wasn't able to read an integer
fhrincrCstdern, "ERROR [tirst input valuel: could nc
poth

—_—
-«

program

Sept 23, 2015 Sprenkle - CSCI330 11

Sept 23, 2015 Sprenkle - CSCI330 10
Streams
- :»?J. =
networkg 8 = program

Finclude <stdio.h>
#include <stdlib.n>

stdin

> g e
keyboan_ stdout X""‘\“;‘..:‘"’
sidout] | :
N

=
. > —
monitor
seatue 12 1) neogar
= ettt LA Trired o o) et e
g

hard dis | rean

fnteger from statn
ot read an integer

program streams provide an abstraction
of byte sequences for /O

Sept 23, 2015 Sprenkle - CSCI330 12

I/O Redirection

® Default input/output behavior for commands:
stdin: keyboard; stdout: screen; stderr: screen

® We can change this using I/0 redirection:

emd < file redirect cmd’s stdin to read from file
cmd > file redirect cmd’s stdout to file

emd >> file append cmd’s stdout to file

cmd >& file redirect cmd’s stdout and stderr to file

amd, | cmd, redirect emd,’s stdout to emd,’s stdin

Depends on the shell

Sept 23,2015 Sprenkle - CSCI330 13

Redirecting Output

® Save output from a program
> java OlympicScore > score.out
Redirected stdout to score.out
stderr would still go to terminal
® To redirect stderr to file as well
> java OlympicScore >& score.out

Sept 23,2015 Sprenkle - CSCI330 14

Review: Combining commands with pipes

® The output of one command can be fed to
another command as input.
Syntax: command; | command,

“pipe”

Example:
1s lists the files in a directory

more foo shows the file foo one screenful at a time

1s | more lists the files in a directory one screenful at a
time
How this works:
« Is writes its output to its stdout
* more’s input stream defaults to its stdin
« the pipe connects Is’s stdout to more’s stdin
« the piped commands run “in parallel”

Sept 23,2015 sprenme - oo -

Pipeline Chaining

® Redirections & pipes can be combined for some
nifty automated purposes:
./myscript < inputl.txt | ./other.sh > out.txt
® Many handy UNIX commands can be piped together
to quickly automate tasks:
> 1s /usr/bin/ | grep "Awh" | sort -r
whois
whoami
who
which Easy way to automatically

whereis test your programs
whatis

what

(this example could be written as 1s —r /usr/bin/wh*)

STREAMS IN C

Sept 23, 2015 Sprenkle - CSCI330 17

File Streams in C

® A stream is any source of input or any
destination for output
conceptually, just a sequence of bytes
accessed through a file pointer, type FILE*
not all streams are associated with files

® 3 standard predefined streams:
stdin, stdout, stderr

Typical structure of I/O operations

A program’s I/O operations usually have the
following structure:

Opening a file
FILE* fopen(char * filename, char * mode)

name of file to open

“r” | read

“w” | write (file need not exist)

file pointer for the stream, “a” | append (file need not exist)
if fopen succeeds; “r+” | read and write, starting at
NULL otherwise the beginning
“w+" | read and write; truncate
file if it exists

“a+” | read and write; append if
file exists

Open a file fopen
Perform 1/0 e —
Close the file fread, fwrite,
fgets
fclose
19
Closing a file

int fclose(FILE *fp)

file pointer for
stream to be closed

return value:
0 if the file was closed successfully;
EOF otherwise

Example Code Structure
FILE *fp;

“ m

fp = fopen(filename, “r”);

if (fp == NULL) {
.. give error message and exit ..
}
. read and process file ..
int status = fclose(fp);
if (status == EOF) {
.. give error message..

Reading and writing

o fprintf, fscanf

similar to printf and scanf, with additional FILE*
argument

e fread(ptr, sz, num, fp)

reads num elements, each of size sz, from stream fp and
stores them at ptr

does not distinguish between end-of-file and error
® use feof() and ferror()
e fwrite(ptr, sz, num, fp)
writes num elements, of size sz, from ptr into stream fp
® return values:
no. of items successfully read/written (not no. of bytes)

C, in Summary

® Compiled, statically typed
® Data types: int, char, float, double
(short, long, signed, unsigned)

What’s missing?

® Pointer-related operations: *, &
Can do arithmetic on pointers

® Arrays are pointers

® Libraries, functions available

Sept 23, 2015 Sprenkle - CSCI330 24

C PROGRAM ORGANIZATION &
DEVELOPMENT USING MAKE

Sept 23,2015 Sprenkle - CSCI330 25

Compiling multi-file programs

filel.c — gcc OPTS -c — filel.o

file2.c = gcc OPTS -c — file2.o0
gcc —>executable

fileN.c = gcc 0PTS -c — fileN.o

Sept 23, 2015 Sprenkle - CSCI330 26

Compiling multi-file programs

filel.c — gcc OPTS -c — filel.o

file2.c — gcc OPTS -c—> file2.o
gcc —>executable

fileN.c = gcc OPTS -c — fileN.o

source files
Only one of these files contains main()

Sept 23,2015 Sprenkle - CSCI330 27

Compiling multi-file programs

filel.c — gcc OPTS [-c\— filel.o

file2.c — gcc OPTS -c—> file2.o
gcc —>executable

fileN.c = gcc 0PTS -c > fileN.o

gec -c
compile to a linkable object
& don't worry about main()

Sept 23, 2015 Sprenkle - CSCI330 28

Compiling multi-file programs

filel.c — gcc 0PTS -c — filel.o

file2.c = gcc OPTS -c—> file2.o
gcc —>executable

fileN.c = gcc O0PTS -c¢ — fileN.o

object files
machine code, but not executable

Sept 23,2015 Sprenkle - CSCI330 29

Compiling multi-file programs

filel.c — gcc OPTS -c — filel.o

file2.c = gcc 0PTS -c— file2.o
gcc —>executable

fileN.c = gcc 0PTS -c¢ — fileN.o

linker invocation
combines various ¥.0 files together

Sept 23, 2015 Sprenkle - CSCI330 30

Functions from special libraries

® Some library code is not linked in by default
Examples: sqrt, ceil, sin, cos, tan, log, ... [math
library]
requires specifying to the compiler/linker that the
math library needs to be linked in

® you do this by adding {-Im”)at the end of the compiler
invocation:

gce -Wall foo.c -Im

linker command
to add math library

® |ibraries that need to be linked in explicitly like
this are indicated in the man pages

Sept 23, 2015 Sprenkle - CSCI330 31

Structuring large applications

® So far, all of our programs have involved a single
source file
impractical for large(r) programs
even where practical, may not be good from a design
perspective
® |f an application is broken up into multiple files,
we need to manage the build process:

how do we (re)compile the various different files
that make up the application?

Sept 23, 2015 Sprenkle - CSCI330 32

Structuring large applications

® When one file is edited, other files may need to
be recompiled

changes to typedefs or macros in header files
changes to types of shared variables

® Applications can contain a lot of files
E.g.: Linux kernel source code: ~ 4,900 files

® Recompiling all files whenever any file is changed
can be very time-consuming.

Sept 23, 2015 Sprenkle - CSCI330 33

Structuring large applications

® |dea: only recompile those files that need to be
recompiled — but which are those?

Sept 23, 2015 Sprenkle - CSCI330 34

Structuring large applications

® |dea: only recompile those files that may be
affected by a change.

\ /\affected

1

changed

Sept 23, 2015 Sprenkle - CSCI330 35

Structuring large applications

® “Smart recompilation” : issues

need to be able to express & keep track of
dependencies between files

“dependency” = which files affected by a change to
another?

need to recompile all (and only) affected files
® doing this manually is tedious and error-prone
® want an automated solution
® make: a tool to automatically recompile based
on user-specified dependencies (“make file”)

Sept 23, 2015 Sprenkle - CSCI330

make files

® make files specify:
dependencies between files
how to update dependent files

file1 c*’{ gee OPTS - —> filel.o

file2.c gee OPT5 ¢ file2.0

fileN. c~>{ gee OPTS ¢ ’—‘fiIeN.o

S
e executable

Sept 23,2015 Sprenkle - CSCI330 37

make files

® make files specify:
dependencies between files
how to update dependent files

dependency

executable

how to update the
dependent file to
satisfy this dependency

Sept 23, 2015 Sprenkle - CSCI330 38

make files

® make files specify:
dependencies between files
how to update dependent files

dependency

filelc

file2.c

fileN c-{ gec OPTS ’—» eNd

how to update the
dependent file to

Sept 23,2015 Sprenkle - CSCI330 39

satisfy this dependency

make files: structure

Structure of a make file:
Definitions (optional)

target: (usually) the
name of a file that is
created by a program
target ... © prerequisites ...

rule

w @b _command
prerequisite: a file used

@b | command as input to create the
target
command: an action
carried out by make
to (re)construct target

Sept 23, 2015 Sprenkle - CSCI330 40

make files: an elementary example

Dependency structure:

make file:
spellcheck.h
spellcheck.c spellcheck: spellcheck.c spellcheck.h
—Wall spellcheck.

dependencies Qgcc all speficheck.c

spellcheck

must be a tab!

Sept 23, 2015 Sprenkle - CSCI330 2

make files: an elementary example

Dependency structure:

spellcheck.h
> why is this not a dependency?

spellcheck.c

N

N

spellcheck

Sept 23, 2015 Sprenkle - CSCI330 42

make files: another example

filel.o : filel.c hdrfilel.h
gce -Wall -g -c filel.c
file2.0 : file2.c hdrfilel.h hdrfile2.h
gce -Wall -g -c file2.c
execFile : filel.o file2.0

gee filel.o file2.0 -0 execFile
Notice any similarities
between the rules?

Sept 23,2015 Sprenkle - CSCI330 a3

make files: Definitions

® Makes make files easier to write, modify
define: Name = replacement list
use: S(Name)

® Example:

CC=gcc
OPTLEV =-02 # optimization level
CFLAGS = -Wall -g —-D DEBUG $(OPTLEV) — ¢

filel.o : filel.c hdrfilel.h
$(CC) S(CFLAGS) filel.c

Sept 23, 2015 Sprenkle - CSCI330 a4

make files: Automatic Variables

® Automatic Variables make it easy to write default
rules
%: indicates pattern rule in file name
S@: target file name
$<: first dependency
® Example: ¢c=gec
CFLAGS =-Wall —g -D DEBUG

%.0 : %.C
$(CC) -c S(CFLAGS) $< -0
S@

Sept 23,2015 Sprenkle - CSCI330 45

Using make

Invocation:
make [-f makeFileName] [target]

How make works

® When invoked, begins processing the appropriate
target
® For each target, considers the prerequisites it
depends on:
target : file, file, ...
checks (recursively) whether each of file; (1) exists and
(2) is more recent than the files that file, depends on;
* if not, executes the associated command(s) to update file,
checks whether target exists and is more recent that file;
® if not, executes the commands associated with target

Sept 23,2015 Sprenkle - CSCI330 a7

default: default:
make searches (in order) for: builds the first target
makefile in the make file
Makefile
Sept 23, 2015 Sprenkle - CSCI330 46
Phony Targets

® A phony target is not the name of a file:

clean; phony target
rm —f *.0 a.out

* “make clean” will remove a.out and *.o files
® Can put any bash commands here

Sept 23, 2015 Sprenkle - CSCI330 48

More on Make

® make has a lot of functionality, e.g.:
implicit rules
implicit variables
conditional parts of make files
recursively running make in subdirectories

® See online make tutorials for more information

Sept 23, 2015 Sprenkle - CSCI330

TODO

® Assignment Ob
Word counter in C
3 parts to the assignment
Due next Monday

Sept 23, 2015 Sprenkle - CSCI330

