Today

® Debugging Process
® Operating System: Protection
® System Calls

Sept 25, 2015 Sprenkle - CSCI330

Review

® How many predefined streams are there?
What are they called? What do they do?

® How do we redirect I/O on the command-line?
® How do we represent streams in C?

Sept 25, 2015 Sprenkle - CSCI330

What is your debugging process?

DEBUGGING

Sept 25, 2015 Sprenkle - CSCI330

Debugging as Engineering

® Much of your time in this course will be spent
debugging
In industry, 50% of software dev is debugging
Even more for kernel development
® How do you reduce time spent debugging?
Produce working code with smallest effort
® Optimize a process involving you, code,
computer

Sept 25, 2015 Sprenkle - CSCI330

Debugging as Science

® Understanding -> design -> code
not the opposite
® Form a hypothesis that explains the bug
Which tests work, which don’t? Why?
Add tests to narrow possible outcomes — what’s the
minimal input required to fail the test & reproduce the
bug?
® Use best practices
Always walk through your code line by line
Unit tests — narrow scope of where problem is

Develop code in stages, with dummy stubs for later
functionality

Sept 25, 2015 Sprenkle - CSCI330

OPERATING SYSTEMS:
PROTECTION

Sept 25, 2015 Sprenkle - CSCI330

OS Challenges

® Reliability
Does the system do what it was designed to do?
® Availability
What portion of the time is the system working?
Mean Time To Failure (MTTF), Mean Time to Repair
® Security
Can the system be compromised by an attacker?
® Privacy
Data is accessible only to authorized users

Sept 25, 2015 Sprenkle - CSCI330 7

OS Challenges

® Portability
For programs:
® Application programming interface (API)
® Abstract virtual machine (AVM)
For the operating system
® Hardware abstraction layer

Sept 25, 2015 Sprenkle - CSCI330 8

OS Challenges

® Performance

Latency/response time

® How long does an operation take to complete?
Throughput

® How many operations can be done per unit of time?
Overhead

® How much extra work is done by the 0S?
Fairness

® How equal is the performance received by different users?
Predictability

® How consistent is the performance over time?

Sept 25, 2015 Sprenkle - CSCI330 9

Key OS Challenge: Protection

® |solate misbehaving applications and users
From other applications, OS
® How do we execute code with restricted
privileges?
Either because the code is buggy or if it might be
malicious
® Some examples:
A script running in a web browser
A program you just downloaded off the Internet
A program you just wrote that you haven'’t tested yet

Sept 25, 2015 Sprenkle - CSCI330 10

Tradeoffs in Protection

® How can we implement execution with limited
privilege?
Execute each program instruction in a simulator
If the instruction is permitted, do the instruction
Otherwise, stop the process
Basic model in JVM and other interpreted languages
® How do we go faster?
Run the unprivileged code directly on the CPU!

Process Abstraction

® OS abstraction for executing a program with
limited privileges
® Process: an instance of a program, running with
limited rights
Thread: a sequence of instructions within a process
® Potentially many threads per process (for now 1:1)
Address space: set of rights of a process
® Memory that the process can access

® Other permissions the process has (e.g., which system
calls it can make, what files it can access)

Process Modes

{ Applications }

U ser Compiler, editor, shell, utilities, libraries

O s Interrupts

Ke rn el Process management, device drivers, system calls

h 4

Hardware

Sept 25, 2015 Sprenkle - CSCI330 13

Process Modes

{ Applications } untrusted

U ser Compiler, editor, shell, utilities, libraries

O s Interrupts

Ke rnel Process management, device drivers, system calls

« core of the OS trusted
« code and data '

structures that are Hardware

protected,
can be accessed only
in the kernel mode

Mode stored in a register
Sept 25, 2015 Sprenkle - CSCI330 14

Processor Modes

® Modern processors typically can operate in 2
modes: user mode and kernel mode

® User mode

processor executes normal instructions in the user's
program.

® Kernel mode

processor executes both normal and privileged
instructions

Processor can access additional registers and
memory address space that are accessible only in

kernel mode
How do we switch from one mode

Sept 25, 2015 Sprd to the other safely?

Exceptions: trap, fault, interrupt

intentional unintentional
happens every time contributing factors

synchronous trap: system call fault
caused by an open, close, read,» invalid or protected
instruction write, fork, exec, exit, address or opcode, page
wait, kill, etc. fault, overflow, etc.
asynchronous “software interrupt” interrupt
caused by some software requests an caused by an external
other event interrupt to be delivered event: 1/0 op completed,
at a later time clock tick, power fail, etc.

Oct 7,2015 Sprenkle - CSCI330 17

Common Functions of Interrupts

® An operating system is interrupt-driven
Sits, waiting for something to happen
® A trap or exception is a software-generated
interrupt caused by an error or a user request

“Hey! Look at me!
I’'m ready to do something!”

“Oopsies! | divided by 0!”

Interrupts

User compiler, edit sg, utilities, libraries

Ke rn e| Process management, device drivers, system co.s

Sept 25, 2015 s* 16
H rwa re

How do we take interrupts safely?

® |nterrupt vector

Limited number of entry points into kernel
® Atomic transfer of control

Single instruction to change:

® Program counter

® Stack pointer

® Memory protection

® Kernel/user mode
® Transparent restartable execution

User program does not know interrupt occurred

Sept 25, 2015 Sprenkle - CSCI330 18

SYSTEM CALLS & LIBRARIES

Sept 25, 2015 Sprenkle - CSCI330 19

System Calls

® User programs are not allowed to access system
resources directly
must ask OS to do that on their behalf
® System calls: set of functions for user programs
to request for OS services
Run in kernel mode

Invoked by special instruction (trap/interrupt)
causing the kernel to switch form user mode

When the system call finishes, processor returns to
the user program and runs in user mode.

Sept 25, 2015 Sprenkle - CSCI330 20

How system calls work

Operating System
Kernel

User-space Kernel-space

Sept 25, 2015 Sprenkle - £5C1330 2

C Runtime Library

Application Program

How Process Works

1. Interrupt transfers control to the interrupt service
routine (ISR)
ISR is part of BIOS or OS

Generally, transferred through the interrupt vector,
which contains the addresses of all the service routines

2. Interrupt architecture must save the address of the
interrupted instruction

. Figure out which system call made
. Verify parameters

. Execute Request

. Back to the calling instruction.

o Uk w

Sept 25, 2015 Sprenkle - CSCI330 22

Vectored Interrupts

® Each device is assigned an interrupt request
number (IRQ).

® The device’s IRQ is used as an index into the
interrupt vector

The value at each index is the address of the ISR
associated with the interrupt.

® The value from the interrupt vector is loaded
into the PC

Sept 25, 2015 Sprenkle - CSCI330 23

Libraries & System Calls

® Many standard C library functions use system
calls

e Example: the malloc() Clibrary function
uses system calls

brk(): grab some more heap space by moving
upper bound of heap

mmap(): find new large chunk of addressable
memory space

Sept 25, 2015 Sprenkle - CSCI330 24

System Calls: Files & I/O

open, close open and close a file

create, unlink create and remove a file

read, write read and write a file

1seek move to a specified byte in a file
chmod change access permission mode
mkdir, rmdir make and remove a directory
stat get file status

ioctl control device

Sept 25, 2015 Sprenkle - CSCI330 25

System Calls: Process Management

e fork create a new process

* exec execute a file

° exit terminate process

e wait wait for a child process to terminate

e sbrk change the size of the space allocated

in the heap data segment of the
process (used by memory allocation
functions, e.g. malloc)

Sept 25, 2015 Sprenkle - CSCI330 26

System Calls: Interprocess Communication

* kill, sigsend send asignal to a process
* pause suspend process until signal
* sigaction set signal handler

Sept 25, 2015 Sprenkle - CSCI330 27

Library functions vs System Calls

¢ C has predefined library functions with the same names
as the system calls — mostly wrapper functions

¢ System calls run in kernel-mode but library functions
run in user-mode and may call system calls

* Relatively small number of system calls -- about 250 in
Linux, see /usr/include/asm/unistd.h

Sept 25, 2015 Sprenkle - CSCI330 28

Why use libraries?

® Convenience: hide underlying system details &
easier to repeatedly call function

e Difficulty: Avoid coding difficult or optimized
algorithms that are well-established (sin, cos)

® Portability: different systems may use slightly
different system calls to implement the same
functionality — this is all taken care of by the
hardware-specific C libraries

Sept 25, 2015 Sprenkle - CSCI330 29

System Call Instructions

® A process makes a system call by executing a
special machine/assembly language instruction:
e.g., SYSCALL TRAP SC INT
® Usually you do not see the system call instruction
because it is wrapped inside a language library
(Java/ C, C++ / etc.)
® Conceptually, a system call is like a function call
to a function that is part of the operating system.
The mechanism is just a little different

Sept 25, 2015 Sprenkle - CSCI330 30

System Call Parameters

® System Call parameters can be passed to the OS in
three ways:
On the system stack
In registers
In a block of memory
® Different techniques are used for different system
calls and even for individual parameters of the same
system call.
E.g. Writing to a file.

® The file to write is usually indicated by an integer passed in
a register.

® The data to be written is passed using a pointer to block of
memory (the pointer can be passed in a register).

Sept 25, 2015 Sprenkle - CSCI330 31

Looking Ahead char** argv

*argv

® AssignOb
1-Pointers.txt *argv[i]
® Practice pointers
® More prepared for the code | gave you
Due Monday

® Moving toward Project 1
Booting!!

Sept 25, 2015 Sprenkle - CSCI330 32

