Today

® Review: Computer Organization
® Booting
® Project 1

Sept 28, 2015 Sprenkle - CSCI330

Review

® How did assignOb go?

® \What are the two main modes that the OS can
runin?

® Why do these two modes exist?

® \What mechanism does the OS use to switch
between these modes?

Sept 28, 2015 Sprenkle - CSCI330 2

Computer Startup

® pootstrap program is loaded at power-up or
reboot

Typically stored in ROM or EPROM, generally known
as firmware

Initializes all aspects of system
Loads operating system kernel and starts execution

Sept 28, 2015 Sprenkle - CSCI330 3

Computer System Organization

® Computer-system operation

One or more CPUs, device controllers connect through
common bus providing access to shared memory

Concurrent execution of CPUs and devices competing for
memory cycles

mouse keyboard printer _monitor
disks é

disk graphics
‘ CcPU | = ‘ USB controller ‘ R

N | | |

Sept 28, 2015 Sprenkle - CSCI330 4

Computer-System Operation
® |/O devices and the CPU can execute
concurrently

® Each device controller is in charge of a particular
device type

® Each device controller has a local buffer

® CPU moves data from/to main memory to/from
local buffers

® |/O is from the device to local buffer of controller
® Device controller informs CPU that it has finished
its operation by causing an interrupt

Sept 28, 2015 Sprenkle - CSCI330 5

I/O Structure

e After I/O starts, control returns to user program only upon
1/0 completion
Wait instruction idles the CPU until the next interrupt
Wait loop (contention for memory access)
At most one 1/0 request is outstanding at a time, no
simultaneous I/0 processing
® After I/O starts, control returns to user program without
waiting for I/O completion

System call — request to the OS to allow user to wait for I/O
completion

Device-status table contains entry for each 1/0 device
indicating its type, address, and state

OS indexes into 1/0 device table to determine device status
and to modify table entry to include interrupt

Sept 28, 2015 Sprenkle - CSCI330 6

Storage Structure

® Main memory — only large storage media that the CPU can
access directly

Random access
Typically volatile — requires power to maintain stored info
® Secondary storage — extension of main memory that provides
large nonvolatile storage capacity
® Hard disks — rigid metal or glass platters covered with magnetic
recording material

Disk surface is logically divided into tracks, which are subdivided
into sectors

The disk controller determines the logical interaction between the
device and the computer

® Solid-state disks — faster than hard disks, nonvolatile
Various technologies
Becoming more popular

Sept 28, 2015 Sprenkle - CSCI330

Storage Hierarchy

® Storage systems organized in hierarchy
Speed
Cost
Volatility
® Caching
copying information into faster storage system
main memory can be viewed as a cache for secondary
storage
® Device Driver for each device controller to manage
1/0
Provides uniform interface between controller and
kernel

Sept 28, 2015 Sprenkle - CSCI330 8

Storage-Device Hierarch

Registers

‘ Main Memory

=\ | - =

\ Solid-State Disk

\ Hard Disk
‘ Optical Disk U
‘ Magnetic Tapes g

Sept 28, 2015 Sprenkle - CSCI330 9

Caching

® Performed at many levels in a computer (in
hardware, operating system, software)
® Information in use copied from slower to faster
storage temporarily
® Faster storage (cache) checked first to determine if
information is there
If it is, information used directly from the cache (fast)
If not, data copied to cache and used there
® Cache smaller than storage being cached
Cache management: important design problem
Cache size and replacement policy

Sept 28, 2015 Sprenkle - CSCI330 10

Direct Memory Access Structure

® Used for high-speed 1/0 devices able to transmit
information at close to memory speeds

® Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention

® Only one interrupt is generated per block, rather
than the one interrupt per byte

Sept 28, 2015 Sprenkle - CSCI330 11

Memory Management

® To execute a program all (or part) of the instructions must
be in memory

® All (or part) of the data that is needed by the program
must be in memory.

® Memory management determines what is in memory and

when
Optimizing CPU utilization and computer response to users

® Memory management activities

Keeping track of which parts of memory are currently being
used and by whom

Deciding which processes (or parts thereof) and data to move
into and out of memory

Allocating and deallocating memory space as needed

Sept 28, 2015 Sprenkle - CSCI330 12

Migration of data “A” from Disk to Register

Hard disk “ Main I;I“:% gz?ardware]
Cache)
memory register

® Multitasking environments must be careful to
use most recent value, no matter where it is
stored in the storage hierarchy

® Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have
the most recent value in their cache

Sept 28, 2015 Sprenkle - CSCI330 13

System Boot

® When power initialized on system, execution starts at a
fixed memory location
Firmware ROM used to hold initial boot code
® OS must be made available to hardware so hardware can
start it

Small piece of code — bootstrap loader—stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk
® Common bootstrap loader, GRUB, allows selection of
kernel from multiple disks, versions, kernel options

® Kernel loads and system is then running

BOOTING
Sept 28, 2015 Sprenkle - CSCI330 14
Booti ng Physical
Memory
(1) BIOS copies
bootloader
(2) Bootloader
Bootloader copies OS kernel
0S kernel
Application

(3) OS kernel
copies application

Sept 28, 2015 Sprenkle - CSCI330 16

Basic Input/Output System (BIOS)

® A number of small programs and subroutines:
Power on self test (POST)
System configuration utility

® Settings stored in small amount of battery backed CMOS
memory.

A set of routines for performing basic operations on
common input/output devices. Such as...
® Read/write a specified C:H:S from disk.
® Read character from keyboard.
® Display character on the screen.
OS bootstrap program
® Stored on a Flash ROM that is part of the computer’s
address space.

Sept 28, 2015 Sprenkle - CSCI330 17

Bootstrap Process

® Program Counter (PC) is initialized to the address of the POST
program contained in the BIOS
® The last instruction of the POST jumps to the address of the
bootstrap program, also contained in the BIOS.
The bootstrap program uses the BIOS routines to load a
program contained in the Master Boot Record (MBR) of the
boot disk into memory at a known address.
MBR = first sector on the disk (512 bytes).
Boot disk is identified by data stored in the configuration CMOS.
® The last instruction in the bootstrap program jumps to the
address at which the MBR program was loaded.
® The MBR program loads the OS kernel.

Often indirectly by loading another program (a secondary boot
loader) that then loads the kernel

Sept 28, 2015 Sprenkle - CSCI330 18

Our Project

® “Build an operating system from scratch: a
project for an introductory operating systems
course” by Michael Black

® 6 Projects:

Project #1 - Introduction and Booting
Project #2 —System calls

Project #3 — Loading & Executing Programs +
Command Line Shell

Project #4 — Writing Files + improved Shell
Project #5 — Processes and Multiprogramming
Project #6 — OS Enhancements

Build on each other

Sept 28, 2015 Sprenkle - CSCI330 19

Intel Architecture

® Bootstrap Process
Machine starts in 16-bit real mode
® 16-bit registers, 20-bit memory addresses
Instruction Pointer (IP) initialized to address of BIOS
bootstrap
® OXFFFFO
BIOS bootstrap program runs
® | oads sector 0 from boot disk at 0x07C00
® Jumps to 0x07C00

Sept 28, 2015 Sprenkle - CSCI330 20

16-bit Real Mode Memory Map

OXFFFFF

0xA0000

R%ad frEm sedc'tEr 5
on boot disk , . 0o

0x00400
0x00000

Sept 28, 2015 Sprenkle - CSCI330 21

bcc

® We'll be using bcc to compile our programs
bcc — Bruce’s C Compiler
® Produces 8086 executables that can run in 16-
bit real mode
® Understands original K&R C Syntax + a few
extensions if the —ansi flag is used
K&R = Brian Kernighan and Dennis Ritchie

THE

1978 — The C Programming Language

PROGRAMMING
LANGUAGE

Brian WKernighan » Dennis M.Ritchie

Sept 28, 2015 Sprenkle - CSCI330

Next Steps

® Project 1: Due next Monday

Sept 28, 2015 Sprenkle - CSCI330 23

